Metamath Proof Explorer


Theorem rblem2

Description: Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 18-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion rblem2 ( ¬ ( 𝜒𝜑 ) ∨ ( 𝜒 ∨ ( 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 rb-ax2 ( ¬ ( 𝜓𝜑 ) ∨ ( 𝜑𝜓 ) )
2 rb-ax3 ( ¬ 𝜑 ∨ ( 𝜓𝜑 ) )
3 1 2 rbsyl ( ¬ 𝜑 ∨ ( 𝜑𝜓 ) )
4 rb-ax1 ( ¬ ( ¬ 𝜑 ∨ ( 𝜑𝜓 ) ) ∨ ( ¬ ( 𝜒𝜑 ) ∨ ( 𝜒 ∨ ( 𝜑𝜓 ) ) ) )
5 3 4 anmp ( ¬ ( 𝜒𝜑 ) ∨ ( 𝜒 ∨ ( 𝜑𝜓 ) ) )