Metamath Proof Explorer


Theorem rblem3

Description: Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 18-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion rblem3 ( ¬ ( 𝜒𝜑 ) ∨ ( ( 𝜒𝜓 ) ∨ 𝜑 ) )

Proof

Step Hyp Ref Expression
1 rb-ax2 ( ¬ ( 𝜑 ∨ ( 𝜒𝜓 ) ) ∨ ( ( 𝜒𝜓 ) ∨ 𝜑 ) )
2 rblem2 ( ¬ ( 𝜑𝜒 ) ∨ ( 𝜑 ∨ ( 𝜒𝜓 ) ) )
3 rb-ax2 ( ¬ ( 𝜒𝜑 ) ∨ ( 𝜑𝜒 ) )
4 2 3 rbsyl ( ¬ ( 𝜒𝜑 ) ∨ ( 𝜑 ∨ ( 𝜒𝜓 ) ) )
5 1 4 rbsyl ( ¬ ( 𝜒𝜑 ) ∨ ( ( 𝜒𝜓 ) ∨ 𝜑 ) )