Description: Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 18-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | rblem3 | ⊢ ( ¬ ( 𝜒 ∨ 𝜑 ) ∨ ( ( 𝜒 ∨ 𝜓 ) ∨ 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rb-ax2 | ⊢ ( ¬ ( 𝜑 ∨ ( 𝜒 ∨ 𝜓 ) ) ∨ ( ( 𝜒 ∨ 𝜓 ) ∨ 𝜑 ) ) | |
2 | rblem2 | ⊢ ( ¬ ( 𝜑 ∨ 𝜒 ) ∨ ( 𝜑 ∨ ( 𝜒 ∨ 𝜓 ) ) ) | |
3 | rb-ax2 | ⊢ ( ¬ ( 𝜒 ∨ 𝜑 ) ∨ ( 𝜑 ∨ 𝜒 ) ) | |
4 | 2 3 | rbsyl | ⊢ ( ¬ ( 𝜒 ∨ 𝜑 ) ∨ ( 𝜑 ∨ ( 𝜒 ∨ 𝜓 ) ) ) |
5 | 1 4 | rbsyl | ⊢ ( ¬ ( 𝜒 ∨ 𝜑 ) ∨ ( ( 𝜒 ∨ 𝜓 ) ∨ 𝜑 ) ) |