Metamath Proof Explorer


Theorem rblem3

Description: Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 18-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion rblem3
|- ( -. ( ch \/ ph ) \/ ( ( ch \/ ps ) \/ ph ) )

Proof

Step Hyp Ref Expression
1 rb-ax2
 |-  ( -. ( ph \/ ( ch \/ ps ) ) \/ ( ( ch \/ ps ) \/ ph ) )
2 rblem2
 |-  ( -. ( ph \/ ch ) \/ ( ph \/ ( ch \/ ps ) ) )
3 rb-ax2
 |-  ( -. ( ch \/ ph ) \/ ( ph \/ ch ) )
4 2 3 rbsyl
 |-  ( -. ( ch \/ ph ) \/ ( ph \/ ( ch \/ ps ) ) )
5 1 4 rbsyl
 |-  ( -. ( ch \/ ph ) \/ ( ( ch \/ ps ) \/ ph ) )