Step |
Hyp |
Ref |
Expression |
1 |
|
rblem4.1 |
|- ( -. ph \/ th ) |
2 |
|
rblem4.2 |
|- ( -. ps \/ ta ) |
3 |
|
rblem4.3 |
|- ( -. ch \/ et ) |
4 |
3 2
|
rblem1 |
|- ( -. ( ch \/ ps ) \/ ( et \/ ta ) ) |
5 |
4 1
|
rblem1 |
|- ( -. ( ( ch \/ ps ) \/ ph ) \/ ( ( et \/ ta ) \/ th ) ) |
6 |
|
rb-ax2 |
|- ( -. ( ph \/ ( ch \/ ps ) ) \/ ( ( ch \/ ps ) \/ ph ) ) |
7 |
|
rb-ax2 |
|- ( -. ( ps \/ ch ) \/ ( ch \/ ps ) ) |
8 |
|
rb-ax1 |
|- ( -. ( -. ( ps \/ ch ) \/ ( ch \/ ps ) ) \/ ( -. ( ph \/ ( ps \/ ch ) ) \/ ( ph \/ ( ch \/ ps ) ) ) ) |
9 |
7 8
|
anmp |
|- ( -. ( ph \/ ( ps \/ ch ) ) \/ ( ph \/ ( ch \/ ps ) ) ) |
10 |
|
rb-ax2 |
|- ( -. ( ( ps \/ ch ) \/ ph ) \/ ( ph \/ ( ps \/ ch ) ) ) |
11 |
9 10
|
rbsyl |
|- ( -. ( ( ps \/ ch ) \/ ph ) \/ ( ph \/ ( ch \/ ps ) ) ) |
12 |
6 11
|
rbsyl |
|- ( -. ( ( ps \/ ch ) \/ ph ) \/ ( ( ch \/ ps ) \/ ph ) ) |
13 |
|
rb-ax4 |
|- ( -. ( ( ( ps \/ ch ) \/ ph ) \/ ( ( ps \/ ch ) \/ ph ) ) \/ ( ( ps \/ ch ) \/ ph ) ) |
14 |
|
rb-ax2 |
|- ( -. ( ph \/ ( ps \/ ch ) ) \/ ( ( ps \/ ch ) \/ ph ) ) |
15 |
|
rblem2 |
|- ( -. ( ph \/ ps ) \/ ( ph \/ ( ps \/ ch ) ) ) |
16 |
14 15
|
rbsyl |
|- ( -. ( ph \/ ps ) \/ ( ( ps \/ ch ) \/ ph ) ) |
17 |
|
rb-ax3 |
|- ( -. ch \/ ( ps \/ ch ) ) |
18 |
|
rblem2 |
|- ( -. ( -. ch \/ ( ps \/ ch ) ) \/ ( -. ch \/ ( ( ps \/ ch ) \/ ph ) ) ) |
19 |
17 18
|
anmp |
|- ( -. ch \/ ( ( ps \/ ch ) \/ ph ) ) |
20 |
16 19
|
rblem1 |
|- ( -. ( ( ph \/ ps ) \/ ch ) \/ ( ( ( ps \/ ch ) \/ ph ) \/ ( ( ps \/ ch ) \/ ph ) ) ) |
21 |
13 20
|
rbsyl |
|- ( -. ( ( ph \/ ps ) \/ ch ) \/ ( ( ps \/ ch ) \/ ph ) ) |
22 |
12 21
|
rbsyl |
|- ( -. ( ( ph \/ ps ) \/ ch ) \/ ( ( ch \/ ps ) \/ ph ) ) |
23 |
5 22
|
rbsyl |
|- ( -. ( ( ph \/ ps ) \/ ch ) \/ ( ( et \/ ta ) \/ th ) ) |