| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rblem4.1 |
|- ( -. ph \/ th ) |
| 2 |
|
rblem4.2 |
|- ( -. ps \/ ta ) |
| 3 |
|
rblem4.3 |
|- ( -. ch \/ et ) |
| 4 |
3 2
|
rblem1 |
|- ( -. ( ch \/ ps ) \/ ( et \/ ta ) ) |
| 5 |
4 1
|
rblem1 |
|- ( -. ( ( ch \/ ps ) \/ ph ) \/ ( ( et \/ ta ) \/ th ) ) |
| 6 |
|
rb-ax2 |
|- ( -. ( ph \/ ( ch \/ ps ) ) \/ ( ( ch \/ ps ) \/ ph ) ) |
| 7 |
|
rb-ax2 |
|- ( -. ( ps \/ ch ) \/ ( ch \/ ps ) ) |
| 8 |
|
rb-ax1 |
|- ( -. ( -. ( ps \/ ch ) \/ ( ch \/ ps ) ) \/ ( -. ( ph \/ ( ps \/ ch ) ) \/ ( ph \/ ( ch \/ ps ) ) ) ) |
| 9 |
7 8
|
anmp |
|- ( -. ( ph \/ ( ps \/ ch ) ) \/ ( ph \/ ( ch \/ ps ) ) ) |
| 10 |
|
rb-ax2 |
|- ( -. ( ( ps \/ ch ) \/ ph ) \/ ( ph \/ ( ps \/ ch ) ) ) |
| 11 |
9 10
|
rbsyl |
|- ( -. ( ( ps \/ ch ) \/ ph ) \/ ( ph \/ ( ch \/ ps ) ) ) |
| 12 |
6 11
|
rbsyl |
|- ( -. ( ( ps \/ ch ) \/ ph ) \/ ( ( ch \/ ps ) \/ ph ) ) |
| 13 |
|
rb-ax4 |
|- ( -. ( ( ( ps \/ ch ) \/ ph ) \/ ( ( ps \/ ch ) \/ ph ) ) \/ ( ( ps \/ ch ) \/ ph ) ) |
| 14 |
|
rb-ax2 |
|- ( -. ( ph \/ ( ps \/ ch ) ) \/ ( ( ps \/ ch ) \/ ph ) ) |
| 15 |
|
rblem2 |
|- ( -. ( ph \/ ps ) \/ ( ph \/ ( ps \/ ch ) ) ) |
| 16 |
14 15
|
rbsyl |
|- ( -. ( ph \/ ps ) \/ ( ( ps \/ ch ) \/ ph ) ) |
| 17 |
|
rb-ax3 |
|- ( -. ch \/ ( ps \/ ch ) ) |
| 18 |
|
rblem2 |
|- ( -. ( -. ch \/ ( ps \/ ch ) ) \/ ( -. ch \/ ( ( ps \/ ch ) \/ ph ) ) ) |
| 19 |
17 18
|
anmp |
|- ( -. ch \/ ( ( ps \/ ch ) \/ ph ) ) |
| 20 |
16 19
|
rblem1 |
|- ( -. ( ( ph \/ ps ) \/ ch ) \/ ( ( ( ps \/ ch ) \/ ph ) \/ ( ( ps \/ ch ) \/ ph ) ) ) |
| 21 |
13 20
|
rbsyl |
|- ( -. ( ( ph \/ ps ) \/ ch ) \/ ( ( ps \/ ch ) \/ ph ) ) |
| 22 |
12 21
|
rbsyl |
|- ( -. ( ( ph \/ ps ) \/ ch ) \/ ( ( ch \/ ps ) \/ ph ) ) |
| 23 |
5 22
|
rbsyl |
|- ( -. ( ( ph \/ ps ) \/ ch ) \/ ( ( et \/ ta ) \/ th ) ) |