Metamath Proof Explorer


Theorem rblem4

Description: Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 18-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses rblem4.1 ( ¬ 𝜑𝜃 )
rblem4.2 ( ¬ 𝜓𝜏 )
rblem4.3 ( ¬ 𝜒𝜂 )
Assertion rblem4 ( ¬ ( ( 𝜑𝜓 ) ∨ 𝜒 ) ∨ ( ( 𝜂𝜏 ) ∨ 𝜃 ) )

Proof

Step Hyp Ref Expression
1 rblem4.1 ( ¬ 𝜑𝜃 )
2 rblem4.2 ( ¬ 𝜓𝜏 )
3 rblem4.3 ( ¬ 𝜒𝜂 )
4 3 2 rblem1 ( ¬ ( 𝜒𝜓 ) ∨ ( 𝜂𝜏 ) )
5 4 1 rblem1 ( ¬ ( ( 𝜒𝜓 ) ∨ 𝜑 ) ∨ ( ( 𝜂𝜏 ) ∨ 𝜃 ) )
6 rb-ax2 ( ¬ ( 𝜑 ∨ ( 𝜒𝜓 ) ) ∨ ( ( 𝜒𝜓 ) ∨ 𝜑 ) )
7 rb-ax2 ( ¬ ( 𝜓𝜒 ) ∨ ( 𝜒𝜓 ) )
8 rb-ax1 ( ¬ ( ¬ ( 𝜓𝜒 ) ∨ ( 𝜒𝜓 ) ) ∨ ( ¬ ( 𝜑 ∨ ( 𝜓𝜒 ) ) ∨ ( 𝜑 ∨ ( 𝜒𝜓 ) ) ) )
9 7 8 anmp ( ¬ ( 𝜑 ∨ ( 𝜓𝜒 ) ) ∨ ( 𝜑 ∨ ( 𝜒𝜓 ) ) )
10 rb-ax2 ( ¬ ( ( 𝜓𝜒 ) ∨ 𝜑 ) ∨ ( 𝜑 ∨ ( 𝜓𝜒 ) ) )
11 9 10 rbsyl ( ¬ ( ( 𝜓𝜒 ) ∨ 𝜑 ) ∨ ( 𝜑 ∨ ( 𝜒𝜓 ) ) )
12 6 11 rbsyl ( ¬ ( ( 𝜓𝜒 ) ∨ 𝜑 ) ∨ ( ( 𝜒𝜓 ) ∨ 𝜑 ) )
13 rb-ax4 ( ¬ ( ( ( 𝜓𝜒 ) ∨ 𝜑 ) ∨ ( ( 𝜓𝜒 ) ∨ 𝜑 ) ) ∨ ( ( 𝜓𝜒 ) ∨ 𝜑 ) )
14 rb-ax2 ( ¬ ( 𝜑 ∨ ( 𝜓𝜒 ) ) ∨ ( ( 𝜓𝜒 ) ∨ 𝜑 ) )
15 rblem2 ( ¬ ( 𝜑𝜓 ) ∨ ( 𝜑 ∨ ( 𝜓𝜒 ) ) )
16 14 15 rbsyl ( ¬ ( 𝜑𝜓 ) ∨ ( ( 𝜓𝜒 ) ∨ 𝜑 ) )
17 rb-ax3 ( ¬ 𝜒 ∨ ( 𝜓𝜒 ) )
18 rblem2 ( ¬ ( ¬ 𝜒 ∨ ( 𝜓𝜒 ) ) ∨ ( ¬ 𝜒 ∨ ( ( 𝜓𝜒 ) ∨ 𝜑 ) ) )
19 17 18 anmp ( ¬ 𝜒 ∨ ( ( 𝜓𝜒 ) ∨ 𝜑 ) )
20 16 19 rblem1 ( ¬ ( ( 𝜑𝜓 ) ∨ 𝜒 ) ∨ ( ( ( 𝜓𝜒 ) ∨ 𝜑 ) ∨ ( ( 𝜓𝜒 ) ∨ 𝜑 ) ) )
21 13 20 rbsyl ( ¬ ( ( 𝜑𝜓 ) ∨ 𝜒 ) ∨ ( ( 𝜓𝜒 ) ∨ 𝜑 ) )
22 12 21 rbsyl ( ¬ ( ( 𝜑𝜓 ) ∨ 𝜒 ) ∨ ( ( 𝜒𝜓 ) ∨ 𝜑 ) )
23 5 22 rbsyl ( ¬ ( ( 𝜑𝜓 ) ∨ 𝜒 ) ∨ ( ( 𝜂𝜏 ) ∨ 𝜃 ) )