| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rblem4.1 |
⊢ ( ¬ 𝜑 ∨ 𝜃 ) |
| 2 |
|
rblem4.2 |
⊢ ( ¬ 𝜓 ∨ 𝜏 ) |
| 3 |
|
rblem4.3 |
⊢ ( ¬ 𝜒 ∨ 𝜂 ) |
| 4 |
3 2
|
rblem1 |
⊢ ( ¬ ( 𝜒 ∨ 𝜓 ) ∨ ( 𝜂 ∨ 𝜏 ) ) |
| 5 |
4 1
|
rblem1 |
⊢ ( ¬ ( ( 𝜒 ∨ 𝜓 ) ∨ 𝜑 ) ∨ ( ( 𝜂 ∨ 𝜏 ) ∨ 𝜃 ) ) |
| 6 |
|
rb-ax2 |
⊢ ( ¬ ( 𝜑 ∨ ( 𝜒 ∨ 𝜓 ) ) ∨ ( ( 𝜒 ∨ 𝜓 ) ∨ 𝜑 ) ) |
| 7 |
|
rb-ax2 |
⊢ ( ¬ ( 𝜓 ∨ 𝜒 ) ∨ ( 𝜒 ∨ 𝜓 ) ) |
| 8 |
|
rb-ax1 |
⊢ ( ¬ ( ¬ ( 𝜓 ∨ 𝜒 ) ∨ ( 𝜒 ∨ 𝜓 ) ) ∨ ( ¬ ( 𝜑 ∨ ( 𝜓 ∨ 𝜒 ) ) ∨ ( 𝜑 ∨ ( 𝜒 ∨ 𝜓 ) ) ) ) |
| 9 |
7 8
|
anmp |
⊢ ( ¬ ( 𝜑 ∨ ( 𝜓 ∨ 𝜒 ) ) ∨ ( 𝜑 ∨ ( 𝜒 ∨ 𝜓 ) ) ) |
| 10 |
|
rb-ax2 |
⊢ ( ¬ ( ( 𝜓 ∨ 𝜒 ) ∨ 𝜑 ) ∨ ( 𝜑 ∨ ( 𝜓 ∨ 𝜒 ) ) ) |
| 11 |
9 10
|
rbsyl |
⊢ ( ¬ ( ( 𝜓 ∨ 𝜒 ) ∨ 𝜑 ) ∨ ( 𝜑 ∨ ( 𝜒 ∨ 𝜓 ) ) ) |
| 12 |
6 11
|
rbsyl |
⊢ ( ¬ ( ( 𝜓 ∨ 𝜒 ) ∨ 𝜑 ) ∨ ( ( 𝜒 ∨ 𝜓 ) ∨ 𝜑 ) ) |
| 13 |
|
rb-ax4 |
⊢ ( ¬ ( ( ( 𝜓 ∨ 𝜒 ) ∨ 𝜑 ) ∨ ( ( 𝜓 ∨ 𝜒 ) ∨ 𝜑 ) ) ∨ ( ( 𝜓 ∨ 𝜒 ) ∨ 𝜑 ) ) |
| 14 |
|
rb-ax2 |
⊢ ( ¬ ( 𝜑 ∨ ( 𝜓 ∨ 𝜒 ) ) ∨ ( ( 𝜓 ∨ 𝜒 ) ∨ 𝜑 ) ) |
| 15 |
|
rblem2 |
⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) ∨ ( 𝜑 ∨ ( 𝜓 ∨ 𝜒 ) ) ) |
| 16 |
14 15
|
rbsyl |
⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) ∨ ( ( 𝜓 ∨ 𝜒 ) ∨ 𝜑 ) ) |
| 17 |
|
rb-ax3 |
⊢ ( ¬ 𝜒 ∨ ( 𝜓 ∨ 𝜒 ) ) |
| 18 |
|
rblem2 |
⊢ ( ¬ ( ¬ 𝜒 ∨ ( 𝜓 ∨ 𝜒 ) ) ∨ ( ¬ 𝜒 ∨ ( ( 𝜓 ∨ 𝜒 ) ∨ 𝜑 ) ) ) |
| 19 |
17 18
|
anmp |
⊢ ( ¬ 𝜒 ∨ ( ( 𝜓 ∨ 𝜒 ) ∨ 𝜑 ) ) |
| 20 |
16 19
|
rblem1 |
⊢ ( ¬ ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ∨ ( ( ( 𝜓 ∨ 𝜒 ) ∨ 𝜑 ) ∨ ( ( 𝜓 ∨ 𝜒 ) ∨ 𝜑 ) ) ) |
| 21 |
13 20
|
rbsyl |
⊢ ( ¬ ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ∨ ( ( 𝜓 ∨ 𝜒 ) ∨ 𝜑 ) ) |
| 22 |
12 21
|
rbsyl |
⊢ ( ¬ ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ∨ ( ( 𝜒 ∨ 𝜓 ) ∨ 𝜑 ) ) |
| 23 |
5 22
|
rbsyl |
⊢ ( ¬ ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ∨ ( ( 𝜂 ∨ 𝜏 ) ∨ 𝜃 ) ) |