Metamath Proof Explorer


Theorem rblem5

Description: Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 19-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion rblem5 ( ¬ ( ¬ ¬ 𝜑𝜓 ) ∨ ( ¬ ¬ 𝜓𝜑 ) )

Proof

Step Hyp Ref Expression
1 rb-ax2 ( ¬ ( 𝜑 ∨ ¬ ¬ 𝜓 ) ∨ ( ¬ ¬ 𝜓𝜑 ) )
2 rb-ax4 ( ¬ ( 𝜑𝜑 ) ∨ 𝜑 )
3 rb-ax3 ( ¬ 𝜑 ∨ ( 𝜑𝜑 ) )
4 2 3 rbsyl ( ¬ 𝜑𝜑 )
5 rb-ax4 ( ¬ ( ¬ ¬ 𝜑 ∨ ¬ ¬ 𝜑 ) ∨ ¬ ¬ 𝜑 )
6 rb-ax3 ( ¬ ¬ ¬ 𝜑 ∨ ( ¬ ¬ 𝜑 ∨ ¬ ¬ 𝜑 ) )
7 5 6 rbsyl ( ¬ ¬ ¬ 𝜑 ∨ ¬ ¬ 𝜑 )
8 rb-ax2 ( ¬ ( ¬ ¬ ¬ 𝜑 ∨ ¬ ¬ 𝜑 ) ∨ ( ¬ ¬ 𝜑 ∨ ¬ ¬ ¬ 𝜑 ) )
9 7 8 anmp ( ¬ ¬ 𝜑 ∨ ¬ ¬ ¬ 𝜑 )
10 9 4 rblem1 ( ¬ ( ¬ 𝜑𝜑 ) ∨ ( ¬ ¬ ¬ 𝜑𝜑 ) )
11 4 10 anmp ( ¬ ¬ ¬ 𝜑𝜑 )
12 rb-ax4 ( ¬ ( ¬ 𝜓 ∨ ¬ 𝜓 ) ∨ ¬ 𝜓 )
13 rb-ax3 ( ¬ ¬ 𝜓 ∨ ( ¬ 𝜓 ∨ ¬ 𝜓 ) )
14 12 13 rbsyl ( ¬ ¬ 𝜓 ∨ ¬ 𝜓 )
15 rb-ax2 ( ¬ ( ¬ ¬ 𝜓 ∨ ¬ 𝜓 ) ∨ ( ¬ 𝜓 ∨ ¬ ¬ 𝜓 ) )
16 14 15 anmp ( ¬ 𝜓 ∨ ¬ ¬ 𝜓 )
17 11 16 rblem1 ( ¬ ( ¬ ¬ 𝜑𝜓 ) ∨ ( 𝜑 ∨ ¬ ¬ 𝜓 ) )
18 1 17 rbsyl ( ¬ ( ¬ ¬ 𝜑𝜓 ) ∨ ( ¬ ¬ 𝜓𝜑 ) )