Step |
Hyp |
Ref |
Expression |
1 |
|
rb-ax2 |
⊢ ( ¬ ( 𝜑 ∨ ¬ ¬ 𝜓 ) ∨ ( ¬ ¬ 𝜓 ∨ 𝜑 ) ) |
2 |
|
rb-ax4 |
⊢ ( ¬ ( 𝜑 ∨ 𝜑 ) ∨ 𝜑 ) |
3 |
|
rb-ax3 |
⊢ ( ¬ 𝜑 ∨ ( 𝜑 ∨ 𝜑 ) ) |
4 |
2 3
|
rbsyl |
⊢ ( ¬ 𝜑 ∨ 𝜑 ) |
5 |
|
rb-ax4 |
⊢ ( ¬ ( ¬ ¬ 𝜑 ∨ ¬ ¬ 𝜑 ) ∨ ¬ ¬ 𝜑 ) |
6 |
|
rb-ax3 |
⊢ ( ¬ ¬ ¬ 𝜑 ∨ ( ¬ ¬ 𝜑 ∨ ¬ ¬ 𝜑 ) ) |
7 |
5 6
|
rbsyl |
⊢ ( ¬ ¬ ¬ 𝜑 ∨ ¬ ¬ 𝜑 ) |
8 |
|
rb-ax2 |
⊢ ( ¬ ( ¬ ¬ ¬ 𝜑 ∨ ¬ ¬ 𝜑 ) ∨ ( ¬ ¬ 𝜑 ∨ ¬ ¬ ¬ 𝜑 ) ) |
9 |
7 8
|
anmp |
⊢ ( ¬ ¬ 𝜑 ∨ ¬ ¬ ¬ 𝜑 ) |
10 |
9 4
|
rblem1 |
⊢ ( ¬ ( ¬ 𝜑 ∨ 𝜑 ) ∨ ( ¬ ¬ ¬ 𝜑 ∨ 𝜑 ) ) |
11 |
4 10
|
anmp |
⊢ ( ¬ ¬ ¬ 𝜑 ∨ 𝜑 ) |
12 |
|
rb-ax4 |
⊢ ( ¬ ( ¬ 𝜓 ∨ ¬ 𝜓 ) ∨ ¬ 𝜓 ) |
13 |
|
rb-ax3 |
⊢ ( ¬ ¬ 𝜓 ∨ ( ¬ 𝜓 ∨ ¬ 𝜓 ) ) |
14 |
12 13
|
rbsyl |
⊢ ( ¬ ¬ 𝜓 ∨ ¬ 𝜓 ) |
15 |
|
rb-ax2 |
⊢ ( ¬ ( ¬ ¬ 𝜓 ∨ ¬ 𝜓 ) ∨ ( ¬ 𝜓 ∨ ¬ ¬ 𝜓 ) ) |
16 |
14 15
|
anmp |
⊢ ( ¬ 𝜓 ∨ ¬ ¬ 𝜓 ) |
17 |
11 16
|
rblem1 |
⊢ ( ¬ ( ¬ ¬ 𝜑 ∨ 𝜓 ) ∨ ( 𝜑 ∨ ¬ ¬ 𝜓 ) ) |
18 |
1 17
|
rbsyl |
⊢ ( ¬ ( ¬ ¬ 𝜑 ∨ 𝜓 ) ∨ ( ¬ ¬ 𝜓 ∨ 𝜑 ) ) |