Metamath Proof Explorer


Theorem rblem5

Description: Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 19-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion rblem5 ¬ ¬ ¬ φ ψ ¬ ¬ ψ φ

Proof

Step Hyp Ref Expression
1 rb-ax2 ¬ φ ¬ ¬ ψ ¬ ¬ ψ φ
2 rb-ax4 ¬ φ φ φ
3 rb-ax3 ¬ φ φ φ
4 2 3 rbsyl ¬ φ φ
5 rb-ax4 ¬ ¬ ¬ φ ¬ ¬ φ ¬ ¬ φ
6 rb-ax3 ¬ ¬ ¬ φ ¬ ¬ φ ¬ ¬ φ
7 5 6 rbsyl ¬ ¬ ¬ φ ¬ ¬ φ
8 rb-ax2 ¬ ¬ ¬ ¬ φ ¬ ¬ φ ¬ ¬ φ ¬ ¬ ¬ φ
9 7 8 anmp ¬ ¬ φ ¬ ¬ ¬ φ
10 9 4 rblem1 ¬ ¬ φ φ ¬ ¬ ¬ φ φ
11 4 10 anmp ¬ ¬ ¬ φ φ
12 rb-ax4 ¬ ¬ ψ ¬ ψ ¬ ψ
13 rb-ax3 ¬ ¬ ψ ¬ ψ ¬ ψ
14 12 13 rbsyl ¬ ¬ ψ ¬ ψ
15 rb-ax2 ¬ ¬ ¬ ψ ¬ ψ ¬ ψ ¬ ¬ ψ
16 14 15 anmp ¬ ψ ¬ ¬ ψ
17 11 16 rblem1 ¬ ¬ ¬ φ ψ φ ¬ ¬ ψ
18 1 17 rbsyl ¬ ¬ ¬ φ ψ ¬ ¬ ψ φ