Step |
Hyp |
Ref |
Expression |
1 |
|
rblem6.1 |
⊢ ¬ ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ¬ ( ¬ 𝜓 ∨ 𝜑 ) ) |
2 |
|
rb-ax4 |
⊢ ( ¬ ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ¬ ( ¬ 𝜑 ∨ 𝜓 ) ) ∨ ¬ ( ¬ 𝜑 ∨ 𝜓 ) ) |
3 |
|
rb-ax3 |
⊢ ( ¬ ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ¬ ( ¬ 𝜑 ∨ 𝜓 ) ) ) |
4 |
2 3
|
rbsyl |
⊢ ( ¬ ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ¬ ( ¬ 𝜑 ∨ 𝜓 ) ) |
5 |
|
rb-ax2 |
⊢ ( ¬ ( ¬ ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ¬ ( ¬ 𝜑 ∨ 𝜓 ) ) ∨ ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ¬ ¬ ( ¬ 𝜑 ∨ 𝜓 ) ) ) |
6 |
4 5
|
anmp |
⊢ ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ¬ ¬ ( ¬ 𝜑 ∨ 𝜓 ) ) |
7 |
|
rblem3 |
⊢ ( ¬ ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ¬ ¬ ( ¬ 𝜑 ∨ 𝜓 ) ) ∨ ( ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ¬ ( ¬ 𝜓 ∨ 𝜑 ) ) ∨ ¬ ¬ ( ¬ 𝜑 ∨ 𝜓 ) ) ) |
8 |
6 7
|
anmp |
⊢ ( ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ¬ ( ¬ 𝜓 ∨ 𝜑 ) ) ∨ ¬ ¬ ( ¬ 𝜑 ∨ 𝜓 ) ) |
9 |
|
rb-ax2 |
⊢ ( ¬ ( ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ¬ ( ¬ 𝜓 ∨ 𝜑 ) ) ∨ ¬ ¬ ( ¬ 𝜑 ∨ 𝜓 ) ) ∨ ( ¬ ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ¬ ( ¬ 𝜓 ∨ 𝜑 ) ) ) ) |
10 |
8 9
|
anmp |
⊢ ( ¬ ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ¬ ( ¬ 𝜓 ∨ 𝜑 ) ) ) |
11 |
|
rblem5 |
⊢ ( ¬ ( ¬ ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ¬ ( ¬ 𝜓 ∨ 𝜑 ) ) ) ∨ ( ¬ ¬ ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ¬ ( ¬ 𝜓 ∨ 𝜑 ) ) ∨ ( ¬ 𝜑 ∨ 𝜓 ) ) ) |
12 |
10 11
|
anmp |
⊢ ( ¬ ¬ ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ¬ ( ¬ 𝜓 ∨ 𝜑 ) ) ∨ ( ¬ 𝜑 ∨ 𝜓 ) ) |
13 |
1 12
|
anmp |
⊢ ( ¬ 𝜑 ∨ 𝜓 ) |