Metamath Proof Explorer


Theorem rblem7

Description: Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 19-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis rblem7.1 ¬ ( ¬ ( ¬ 𝜑𝜓 ) ∨ ¬ ( ¬ 𝜓𝜑 ) )
Assertion rblem7 ( ¬ 𝜓𝜑 )

Proof

Step Hyp Ref Expression
1 rblem7.1 ¬ ( ¬ ( ¬ 𝜑𝜓 ) ∨ ¬ ( ¬ 𝜓𝜑 ) )
2 rb-ax3 ( ¬ ¬ ( ¬ 𝜓𝜑 ) ∨ ( ¬ ( ¬ 𝜑𝜓 ) ∨ ¬ ( ¬ 𝜓𝜑 ) ) )
3 rblem5 ( ¬ ( ¬ ¬ ( ¬ 𝜓𝜑 ) ∨ ( ¬ ( ¬ 𝜑𝜓 ) ∨ ¬ ( ¬ 𝜓𝜑 ) ) ) ∨ ( ¬ ¬ ( ¬ ( ¬ 𝜑𝜓 ) ∨ ¬ ( ¬ 𝜓𝜑 ) ) ∨ ( ¬ 𝜓𝜑 ) ) )
4 2 3 anmp ( ¬ ¬ ( ¬ ( ¬ 𝜑𝜓 ) ∨ ¬ ( ¬ 𝜓𝜑 ) ) ∨ ( ¬ 𝜓𝜑 ) )
5 1 4 anmp ( ¬ 𝜓𝜑 )