Metamath Proof Explorer


Theorem rblem7

Description: Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 19-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis rblem7.1 ¬¬¬φψ¬¬ψφ
Assertion rblem7 ¬ψφ

Proof

Step Hyp Ref Expression
1 rblem7.1 ¬¬¬φψ¬¬ψφ
2 rb-ax3 ¬¬¬ψφ¬¬φψ¬¬ψφ
3 rblem5 ¬¬¬¬ψφ¬¬φψ¬¬ψφ¬¬¬¬φψ¬¬ψφ¬ψφ
4 2 3 anmp ¬¬¬¬φψ¬¬ψφ¬ψφ
5 1 4 anmp ¬ψφ