Metamath Proof Explorer


Theorem re1axmp

Description: ax-mp derived from Russell-Bernays'. (Contributed by Anthony Hart, 19-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses re1axmp.min φ
re1axmp.maj φ ψ
Assertion re1axmp ψ

Proof

Step Hyp Ref Expression
1 re1axmp.min φ
2 re1axmp.maj φ ψ
3 rb-imdf ¬ ¬ ¬ φ ψ ¬ φ ψ ¬ ¬ ¬ φ ψ φ ψ
4 3 rblem6 ¬ φ ψ ¬ φ ψ
5 2 4 anmp ¬ φ ψ
6 1 5 anmp ψ