Metamath Proof Explorer


Theorem re2luk1

Description: luk-1 derived from Russell-Bernays'. (Contributed by Anthony Hart, 19-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion re2luk1 φψψχφχ

Proof

Step Hyp Ref Expression
1 rb-imdf ¬¬¬ψχφχ¬ψχφχ¬¬¬ψχφχψχφχ
2 1 rblem7 ¬¬ψχφχψχφχ
3 rb-imdf ¬¬¬ψχ¬ψχ¬¬¬ψχψχ
4 3 rblem6 ¬ψχ¬ψχ
5 rb-ax2 ¬¬ψχ¬¬¬ψχ¬¬¬ψχ¬ψχ
6 rb-ax4 ¬¬ψχ¬ψχ¬ψχ
7 rb-ax3 ¬¬ψχ¬ψχ¬ψχ
8 6 7 rbsyl ¬¬ψχ¬ψχ
9 rb-ax4 ¬¬¬ψχ¬¬ψχ¬¬ψχ
10 rb-ax3 ¬¬¬ψχ¬¬ψχ¬¬ψχ
11 9 10 rbsyl ¬¬¬ψχ¬¬ψχ
12 rb-ax2 ¬¬¬¬ψχ¬¬ψχ¬¬ψχ¬¬¬ψχ
13 11 12 anmp ¬¬ψχ¬¬¬ψχ
14 8 13 rblem1 ¬¬ψχ¬ψχ¬ψχ¬¬¬ψχ
15 5 14 rbsyl ¬¬ψχ¬ψχ¬¬¬ψχ¬ψχ
16 4 15 anmp ¬¬¬ψχ¬ψχ
17 rb-imdf ¬¬¬φχ¬φχ¬¬¬φχφχ
18 17 rblem7 ¬¬φχφχ
19 16 18 rblem1 ¬¬¬ψχ¬φχ¬ψχφχ
20 rb-ax1 ¬¬ψχ¬¬φψ¬φχ
21 rb-ax2 ¬¬¬ψχ¬φχ¬¬φψ¬¬φψ¬¬ψχ¬φχ
22 rb-ax4 ¬¬¬φψ¬¬φψ¬¬φψ
23 rb-ax3 ¬¬¬φψ¬¬φψ¬¬φψ
24 22 23 rbsyl ¬¬¬φψ¬¬φψ
25 rb-ax4 ¬¬φχ¬φχ¬φχ
26 rb-ax3 ¬¬φχ¬φχ¬φχ
27 25 26 rbsyl ¬¬φχ¬φχ
28 24 27 11 rblem4 ¬¬¬φψ¬φχ¬¬ψχ¬¬ψχ¬φχ¬¬φψ
29 rb-ax2 ¬¬¬ψχ¬¬φψ¬φχ¬¬φψ¬φχ¬¬ψχ
30 28 29 rbsyl ¬¬¬ψχ¬¬φψ¬φχ¬¬ψχ¬φχ¬¬φψ
31 21 30 rbsyl ¬¬¬ψχ¬¬φψ¬φχ¬¬φψ¬¬ψχ¬φχ
32 20 31 anmp ¬¬φψ¬¬ψχ¬φχ
33 19 32 rbsyl ¬¬φψ¬ψχφχ
34 rb-imdf ¬¬¬φψ¬φψ¬¬¬φψφψ
35 34 rblem6 ¬φψ¬φψ
36 33 35 rbsyl ¬φψ¬ψχφχ
37 2 36 rbsyl ¬φψψχφχ
38 rb-imdf ¬¬¬φψψχφχ¬φψψχφχ¬¬¬φψψχφχφψψχφχ
39 38 rblem7 ¬¬φψψχφχφψψχφχ
40 37 39 anmp φψψχφχ