Metamath Proof Explorer


Theorem re2luk2

Description: luk-2 derived from Russell-Bernays'. (Contributed by Anthony Hart, 19-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion re2luk2 ¬φφφ

Proof

Step Hyp Ref Expression
1 rb-ax4 ¬φφφ
2 rb-ax3 ¬φφφ
3 1 2 rbsyl ¬φφ
4 rb-ax4 ¬¬¬φ¬¬φ¬¬φ
5 rb-ax3 ¬¬¬φ¬¬φ¬¬φ
6 4 5 rbsyl ¬¬¬φ¬¬φ
7 rb-ax2 ¬¬¬¬φ¬¬φ¬¬φ¬¬¬φ
8 6 7 anmp ¬¬φ¬¬¬φ
9 8 3 rblem1 ¬¬φφ¬¬¬φφ
10 3 9 anmp ¬¬¬φφ
11 10 3 rblem1 ¬¬¬φφφφ
12 1 11 rbsyl ¬¬¬φφφ
13 rb-imdf ¬¬¬¬φφ¬¬φφ¬¬¬¬φφ¬φφ
14 13 rblem6 ¬¬φφ¬¬φφ
15 12 14 rbsyl ¬¬φφφ
16 rb-imdf ¬¬¬¬φφφ¬¬φφφ¬¬¬¬φφφ¬φφφ
17 16 rblem7 ¬¬¬φφφ¬φφφ
18 15 17 anmp ¬φφφ