Metamath Proof Explorer


Theorem re2luk2

Description: luk-2 derived from Russell-Bernays'. (Contributed by Anthony Hart, 19-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion re2luk2 ( ( ¬ 𝜑𝜑 ) → 𝜑 )

Proof

Step Hyp Ref Expression
1 rb-ax4 ( ¬ ( 𝜑𝜑 ) ∨ 𝜑 )
2 rb-ax3 ( ¬ 𝜑 ∨ ( 𝜑𝜑 ) )
3 1 2 rbsyl ( ¬ 𝜑𝜑 )
4 rb-ax4 ( ¬ ( ¬ ¬ 𝜑 ∨ ¬ ¬ 𝜑 ) ∨ ¬ ¬ 𝜑 )
5 rb-ax3 ( ¬ ¬ ¬ 𝜑 ∨ ( ¬ ¬ 𝜑 ∨ ¬ ¬ 𝜑 ) )
6 4 5 rbsyl ( ¬ ¬ ¬ 𝜑 ∨ ¬ ¬ 𝜑 )
7 rb-ax2 ( ¬ ( ¬ ¬ ¬ 𝜑 ∨ ¬ ¬ 𝜑 ) ∨ ( ¬ ¬ 𝜑 ∨ ¬ ¬ ¬ 𝜑 ) )
8 6 7 anmp ( ¬ ¬ 𝜑 ∨ ¬ ¬ ¬ 𝜑 )
9 8 3 rblem1 ( ¬ ( ¬ 𝜑𝜑 ) ∨ ( ¬ ¬ ¬ 𝜑𝜑 ) )
10 3 9 anmp ( ¬ ¬ ¬ 𝜑𝜑 )
11 10 3 rblem1 ( ¬ ( ¬ ¬ 𝜑𝜑 ) ∨ ( 𝜑𝜑 ) )
12 1 11 rbsyl ( ¬ ( ¬ ¬ 𝜑𝜑 ) ∨ 𝜑 )
13 rb-imdf ¬ ( ¬ ( ¬ ( ¬ 𝜑𝜑 ) ∨ ( ¬ ¬ 𝜑𝜑 ) ) ∨ ¬ ( ¬ ( ¬ ¬ 𝜑𝜑 ) ∨ ( ¬ 𝜑𝜑 ) ) )
14 13 rblem6 ( ¬ ( ¬ 𝜑𝜑 ) ∨ ( ¬ ¬ 𝜑𝜑 ) )
15 12 14 rbsyl ( ¬ ( ¬ 𝜑𝜑 ) ∨ 𝜑 )
16 rb-imdf ¬ ( ¬ ( ¬ ( ( ¬ 𝜑𝜑 ) → 𝜑 ) ∨ ( ¬ ( ¬ 𝜑𝜑 ) ∨ 𝜑 ) ) ∨ ¬ ( ¬ ( ¬ ( ¬ 𝜑𝜑 ) ∨ 𝜑 ) ∨ ( ( ¬ 𝜑𝜑 ) → 𝜑 ) ) )
17 16 rblem7 ( ¬ ( ¬ ( ¬ 𝜑𝜑 ) ∨ 𝜑 ) ∨ ( ( ¬ 𝜑𝜑 ) → 𝜑 ) )
18 15 17 anmp ( ( ¬ 𝜑𝜑 ) → 𝜑 )