Step |
Hyp |
Ref |
Expression |
1 |
|
rb-ax4 |
⊢ ( ¬ ( 𝜑 ∨ 𝜑 ) ∨ 𝜑 ) |
2 |
|
rb-ax3 |
⊢ ( ¬ 𝜑 ∨ ( 𝜑 ∨ 𝜑 ) ) |
3 |
1 2
|
rbsyl |
⊢ ( ¬ 𝜑 ∨ 𝜑 ) |
4 |
|
rb-ax4 |
⊢ ( ¬ ( ¬ ¬ 𝜑 ∨ ¬ ¬ 𝜑 ) ∨ ¬ ¬ 𝜑 ) |
5 |
|
rb-ax3 |
⊢ ( ¬ ¬ ¬ 𝜑 ∨ ( ¬ ¬ 𝜑 ∨ ¬ ¬ 𝜑 ) ) |
6 |
4 5
|
rbsyl |
⊢ ( ¬ ¬ ¬ 𝜑 ∨ ¬ ¬ 𝜑 ) |
7 |
|
rb-ax2 |
⊢ ( ¬ ( ¬ ¬ ¬ 𝜑 ∨ ¬ ¬ 𝜑 ) ∨ ( ¬ ¬ 𝜑 ∨ ¬ ¬ ¬ 𝜑 ) ) |
8 |
6 7
|
anmp |
⊢ ( ¬ ¬ 𝜑 ∨ ¬ ¬ ¬ 𝜑 ) |
9 |
8 3
|
rblem1 |
⊢ ( ¬ ( ¬ 𝜑 ∨ 𝜑 ) ∨ ( ¬ ¬ ¬ 𝜑 ∨ 𝜑 ) ) |
10 |
3 9
|
anmp |
⊢ ( ¬ ¬ ¬ 𝜑 ∨ 𝜑 ) |
11 |
10 3
|
rblem1 |
⊢ ( ¬ ( ¬ ¬ 𝜑 ∨ 𝜑 ) ∨ ( 𝜑 ∨ 𝜑 ) ) |
12 |
1 11
|
rbsyl |
⊢ ( ¬ ( ¬ ¬ 𝜑 ∨ 𝜑 ) ∨ 𝜑 ) |
13 |
|
rb-imdf |
⊢ ¬ ( ¬ ( ¬ ( ¬ 𝜑 → 𝜑 ) ∨ ( ¬ ¬ 𝜑 ∨ 𝜑 ) ) ∨ ¬ ( ¬ ( ¬ ¬ 𝜑 ∨ 𝜑 ) ∨ ( ¬ 𝜑 → 𝜑 ) ) ) |
14 |
13
|
rblem6 |
⊢ ( ¬ ( ¬ 𝜑 → 𝜑 ) ∨ ( ¬ ¬ 𝜑 ∨ 𝜑 ) ) |
15 |
12 14
|
rbsyl |
⊢ ( ¬ ( ¬ 𝜑 → 𝜑 ) ∨ 𝜑 ) |
16 |
|
rb-imdf |
⊢ ¬ ( ¬ ( ¬ ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) ∨ ( ¬ ( ¬ 𝜑 → 𝜑 ) ∨ 𝜑 ) ) ∨ ¬ ( ¬ ( ¬ ( ¬ 𝜑 → 𝜑 ) ∨ 𝜑 ) ∨ ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) ) ) |
17 |
16
|
rblem7 |
⊢ ( ¬ ( ¬ ( ¬ 𝜑 → 𝜑 ) ∨ 𝜑 ) ∨ ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) ) |
18 |
15 17
|
anmp |
⊢ ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) |