Metamath Proof Explorer


Theorem re2luk3

Description: luk-3 derived from Russell-Bernays'.

This theorem, along with re1axmp , re2luk1 , and re2luk2 shows that rb-ax1 , rb-ax2 , rb-ax3 , and rb-ax4 , along with anmp , can be used as a complete axiomatization of propositional calculus. (Contributed by Anthony Hart, 19-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion re2luk3 ( 𝜑 → ( ¬ 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 rb-imdf ¬ ( ¬ ( ¬ ( ¬ 𝜑𝜓 ) ∨ ( ¬ ¬ 𝜑𝜓 ) ) ∨ ¬ ( ¬ ( ¬ ¬ 𝜑𝜓 ) ∨ ( ¬ 𝜑𝜓 ) ) )
2 1 rblem7 ( ¬ ( ¬ ¬ 𝜑𝜓 ) ∨ ( ¬ 𝜑𝜓 ) )
3 rb-ax4 ( ¬ ( ¬ 𝜑 ∨ ¬ 𝜑 ) ∨ ¬ 𝜑 )
4 rb-ax3 ( ¬ ¬ 𝜑 ∨ ( ¬ 𝜑 ∨ ¬ 𝜑 ) )
5 3 4 rbsyl ( ¬ ¬ 𝜑 ∨ ¬ 𝜑 )
6 rb-ax2 ( ¬ ( ¬ ¬ 𝜑 ∨ ¬ 𝜑 ) ∨ ( ¬ 𝜑 ∨ ¬ ¬ 𝜑 ) )
7 5 6 anmp ( ¬ 𝜑 ∨ ¬ ¬ 𝜑 )
8 rblem2 ( ¬ ( ¬ 𝜑 ∨ ¬ ¬ 𝜑 ) ∨ ( ¬ 𝜑 ∨ ( ¬ ¬ 𝜑𝜓 ) ) )
9 7 8 anmp ( ¬ 𝜑 ∨ ( ¬ ¬ 𝜑𝜓 ) )
10 2 9 rbsyl ( ¬ 𝜑 ∨ ( ¬ 𝜑𝜓 ) )
11 rb-imdf ¬ ( ¬ ( ¬ ( 𝜑 → ( ¬ 𝜑𝜓 ) ) ∨ ( ¬ 𝜑 ∨ ( ¬ 𝜑𝜓 ) ) ) ∨ ¬ ( ¬ ( ¬ 𝜑 ∨ ( ¬ 𝜑𝜓 ) ) ∨ ( 𝜑 → ( ¬ 𝜑𝜓 ) ) ) )
12 11 rblem7 ( ¬ ( ¬ 𝜑 ∨ ( ¬ 𝜑𝜓 ) ) ∨ ( 𝜑 → ( ¬ 𝜑𝜓 ) ) )
13 10 12 anmp ( 𝜑 → ( ¬ 𝜑𝜓 ) )