Step |
Hyp |
Ref |
Expression |
1 |
|
rb-imdf |
⊢ ¬ ( ¬ ( ¬ ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ∨ ( ¬ ( 𝜓 → 𝜒 ) ∨ ( 𝜑 → 𝜒 ) ) ) ∨ ¬ ( ¬ ( ¬ ( 𝜓 → 𝜒 ) ∨ ( 𝜑 → 𝜒 ) ) ∨ ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ) ) |
2 |
1
|
rblem7 |
⊢ ( ¬ ( ¬ ( 𝜓 → 𝜒 ) ∨ ( 𝜑 → 𝜒 ) ) ∨ ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ) |
3 |
|
rb-imdf |
⊢ ¬ ( ¬ ( ¬ ( 𝜓 → 𝜒 ) ∨ ( ¬ 𝜓 ∨ 𝜒 ) ) ∨ ¬ ( ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ( 𝜓 → 𝜒 ) ) ) |
4 |
3
|
rblem6 |
⊢ ( ¬ ( 𝜓 → 𝜒 ) ∨ ( ¬ 𝜓 ∨ 𝜒 ) ) |
5 |
|
rb-ax2 |
⊢ ( ¬ ( ¬ ( 𝜓 → 𝜒 ) ∨ ¬ ¬ ( ¬ 𝜓 ∨ 𝜒 ) ) ∨ ( ¬ ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ¬ ( 𝜓 → 𝜒 ) ) ) |
6 |
|
rb-ax4 |
⊢ ( ¬ ( ¬ ( 𝜓 → 𝜒 ) ∨ ¬ ( 𝜓 → 𝜒 ) ) ∨ ¬ ( 𝜓 → 𝜒 ) ) |
7 |
|
rb-ax3 |
⊢ ( ¬ ¬ ( 𝜓 → 𝜒 ) ∨ ( ¬ ( 𝜓 → 𝜒 ) ∨ ¬ ( 𝜓 → 𝜒 ) ) ) |
8 |
6 7
|
rbsyl |
⊢ ( ¬ ¬ ( 𝜓 → 𝜒 ) ∨ ¬ ( 𝜓 → 𝜒 ) ) |
9 |
|
rb-ax4 |
⊢ ( ¬ ( ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ¬ ( ¬ 𝜓 ∨ 𝜒 ) ) ∨ ¬ ( ¬ 𝜓 ∨ 𝜒 ) ) |
10 |
|
rb-ax3 |
⊢ ( ¬ ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ( ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ¬ ( ¬ 𝜓 ∨ 𝜒 ) ) ) |
11 |
9 10
|
rbsyl |
⊢ ( ¬ ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ¬ ( ¬ 𝜓 ∨ 𝜒 ) ) |
12 |
|
rb-ax2 |
⊢ ( ¬ ( ¬ ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ¬ ( ¬ 𝜓 ∨ 𝜒 ) ) ∨ ( ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ¬ ¬ ( ¬ 𝜓 ∨ 𝜒 ) ) ) |
13 |
11 12
|
anmp |
⊢ ( ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ¬ ¬ ( ¬ 𝜓 ∨ 𝜒 ) ) |
14 |
8 13
|
rblem1 |
⊢ ( ¬ ( ¬ ( 𝜓 → 𝜒 ) ∨ ( ¬ 𝜓 ∨ 𝜒 ) ) ∨ ( ¬ ( 𝜓 → 𝜒 ) ∨ ¬ ¬ ( ¬ 𝜓 ∨ 𝜒 ) ) ) |
15 |
5 14
|
rbsyl |
⊢ ( ¬ ( ¬ ( 𝜓 → 𝜒 ) ∨ ( ¬ 𝜓 ∨ 𝜒 ) ) ∨ ( ¬ ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ¬ ( 𝜓 → 𝜒 ) ) ) |
16 |
4 15
|
anmp |
⊢ ( ¬ ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ¬ ( 𝜓 → 𝜒 ) ) |
17 |
|
rb-imdf |
⊢ ¬ ( ¬ ( ¬ ( 𝜑 → 𝜒 ) ∨ ( ¬ 𝜑 ∨ 𝜒 ) ) ∨ ¬ ( ¬ ( ¬ 𝜑 ∨ 𝜒 ) ∨ ( 𝜑 → 𝜒 ) ) ) |
18 |
17
|
rblem7 |
⊢ ( ¬ ( ¬ 𝜑 ∨ 𝜒 ) ∨ ( 𝜑 → 𝜒 ) ) |
19 |
16 18
|
rblem1 |
⊢ ( ¬ ( ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ( ¬ 𝜑 ∨ 𝜒 ) ) ∨ ( ¬ ( 𝜓 → 𝜒 ) ∨ ( 𝜑 → 𝜒 ) ) ) |
20 |
|
rb-ax1 |
⊢ ( ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ( ¬ 𝜑 ∨ 𝜒 ) ) ) |
21 |
|
rb-ax2 |
⊢ ( ¬ ( ( ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ( ¬ 𝜑 ∨ 𝜒 ) ) ∨ ¬ ( ¬ 𝜑 ∨ 𝜓 ) ) ∨ ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ( ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ( ¬ 𝜑 ∨ 𝜒 ) ) ) ) |
22 |
|
rb-ax4 |
⊢ ( ¬ ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ¬ ( ¬ 𝜑 ∨ 𝜓 ) ) ∨ ¬ ( ¬ 𝜑 ∨ 𝜓 ) ) |
23 |
|
rb-ax3 |
⊢ ( ¬ ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ¬ ( ¬ 𝜑 ∨ 𝜓 ) ) ) |
24 |
22 23
|
rbsyl |
⊢ ( ¬ ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ¬ ( ¬ 𝜑 ∨ 𝜓 ) ) |
25 |
|
rb-ax4 |
⊢ ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∨ ( ¬ 𝜑 ∨ 𝜒 ) ) ∨ ( ¬ 𝜑 ∨ 𝜒 ) ) |
26 |
|
rb-ax3 |
⊢ ( ¬ ( ¬ 𝜑 ∨ 𝜒 ) ∨ ( ( ¬ 𝜑 ∨ 𝜒 ) ∨ ( ¬ 𝜑 ∨ 𝜒 ) ) ) |
27 |
25 26
|
rbsyl |
⊢ ( ¬ ( ¬ 𝜑 ∨ 𝜒 ) ∨ ( ¬ 𝜑 ∨ 𝜒 ) ) |
28 |
24 27 11
|
rblem4 |
⊢ ( ¬ ( ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ( ¬ 𝜑 ∨ 𝜒 ) ) ∨ ¬ ( ¬ 𝜓 ∨ 𝜒 ) ) ∨ ( ( ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ( ¬ 𝜑 ∨ 𝜒 ) ) ∨ ¬ ( ¬ 𝜑 ∨ 𝜓 ) ) ) |
29 |
|
rb-ax2 |
⊢ ( ¬ ( ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ( ¬ 𝜑 ∨ 𝜒 ) ) ) ∨ ( ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ( ¬ 𝜑 ∨ 𝜒 ) ) ∨ ¬ ( ¬ 𝜓 ∨ 𝜒 ) ) ) |
30 |
28 29
|
rbsyl |
⊢ ( ¬ ( ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ( ¬ 𝜑 ∨ 𝜒 ) ) ) ∨ ( ( ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ( ¬ 𝜑 ∨ 𝜒 ) ) ∨ ¬ ( ¬ 𝜑 ∨ 𝜓 ) ) ) |
31 |
21 30
|
rbsyl |
⊢ ( ¬ ( ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ( ¬ 𝜑 ∨ 𝜒 ) ) ) ∨ ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ( ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ( ¬ 𝜑 ∨ 𝜒 ) ) ) ) |
32 |
20 31
|
anmp |
⊢ ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ( ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ( ¬ 𝜑 ∨ 𝜒 ) ) ) |
33 |
19 32
|
rbsyl |
⊢ ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ( ¬ ( 𝜓 → 𝜒 ) ∨ ( 𝜑 → 𝜒 ) ) ) |
34 |
|
rb-imdf |
⊢ ¬ ( ¬ ( ¬ ( 𝜑 → 𝜓 ) ∨ ( ¬ 𝜑 ∨ 𝜓 ) ) ∨ ¬ ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ( 𝜑 → 𝜓 ) ) ) |
35 |
34
|
rblem6 |
⊢ ( ¬ ( 𝜑 → 𝜓 ) ∨ ( ¬ 𝜑 ∨ 𝜓 ) ) |
36 |
33 35
|
rbsyl |
⊢ ( ¬ ( 𝜑 → 𝜓 ) ∨ ( ¬ ( 𝜓 → 𝜒 ) ∨ ( 𝜑 → 𝜒 ) ) ) |
37 |
2 36
|
rbsyl |
⊢ ( ¬ ( 𝜑 → 𝜓 ) ∨ ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ) |
38 |
|
rb-imdf |
⊢ ¬ ( ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ) ∨ ( ¬ ( 𝜑 → 𝜓 ) ∨ ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ) ) ∨ ¬ ( ¬ ( ¬ ( 𝜑 → 𝜓 ) ∨ ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ) ∨ ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ) ) ) |
39 |
38
|
rblem7 |
⊢ ( ¬ ( ¬ ( 𝜑 → 𝜓 ) ∨ ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ) ∨ ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ) ) |
40 |
37 39
|
anmp |
⊢ ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ) |