| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rb-imdf |
⊢ ¬ ( ¬ ( ¬ ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ∨ ( ¬ ( 𝜓 → 𝜒 ) ∨ ( 𝜑 → 𝜒 ) ) ) ∨ ¬ ( ¬ ( ¬ ( 𝜓 → 𝜒 ) ∨ ( 𝜑 → 𝜒 ) ) ∨ ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ) ) |
| 2 |
1
|
rblem7 |
⊢ ( ¬ ( ¬ ( 𝜓 → 𝜒 ) ∨ ( 𝜑 → 𝜒 ) ) ∨ ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ) |
| 3 |
|
rb-imdf |
⊢ ¬ ( ¬ ( ¬ ( 𝜓 → 𝜒 ) ∨ ( ¬ 𝜓 ∨ 𝜒 ) ) ∨ ¬ ( ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ( 𝜓 → 𝜒 ) ) ) |
| 4 |
3
|
rblem6 |
⊢ ( ¬ ( 𝜓 → 𝜒 ) ∨ ( ¬ 𝜓 ∨ 𝜒 ) ) |
| 5 |
|
rb-ax2 |
⊢ ( ¬ ( ¬ ( 𝜓 → 𝜒 ) ∨ ¬ ¬ ( ¬ 𝜓 ∨ 𝜒 ) ) ∨ ( ¬ ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ¬ ( 𝜓 → 𝜒 ) ) ) |
| 6 |
|
rb-ax4 |
⊢ ( ¬ ( ¬ ( 𝜓 → 𝜒 ) ∨ ¬ ( 𝜓 → 𝜒 ) ) ∨ ¬ ( 𝜓 → 𝜒 ) ) |
| 7 |
|
rb-ax3 |
⊢ ( ¬ ¬ ( 𝜓 → 𝜒 ) ∨ ( ¬ ( 𝜓 → 𝜒 ) ∨ ¬ ( 𝜓 → 𝜒 ) ) ) |
| 8 |
6 7
|
rbsyl |
⊢ ( ¬ ¬ ( 𝜓 → 𝜒 ) ∨ ¬ ( 𝜓 → 𝜒 ) ) |
| 9 |
|
rb-ax4 |
⊢ ( ¬ ( ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ¬ ( ¬ 𝜓 ∨ 𝜒 ) ) ∨ ¬ ( ¬ 𝜓 ∨ 𝜒 ) ) |
| 10 |
|
rb-ax3 |
⊢ ( ¬ ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ( ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ¬ ( ¬ 𝜓 ∨ 𝜒 ) ) ) |
| 11 |
9 10
|
rbsyl |
⊢ ( ¬ ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ¬ ( ¬ 𝜓 ∨ 𝜒 ) ) |
| 12 |
|
rb-ax2 |
⊢ ( ¬ ( ¬ ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ¬ ( ¬ 𝜓 ∨ 𝜒 ) ) ∨ ( ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ¬ ¬ ( ¬ 𝜓 ∨ 𝜒 ) ) ) |
| 13 |
11 12
|
anmp |
⊢ ( ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ¬ ¬ ( ¬ 𝜓 ∨ 𝜒 ) ) |
| 14 |
8 13
|
rblem1 |
⊢ ( ¬ ( ¬ ( 𝜓 → 𝜒 ) ∨ ( ¬ 𝜓 ∨ 𝜒 ) ) ∨ ( ¬ ( 𝜓 → 𝜒 ) ∨ ¬ ¬ ( ¬ 𝜓 ∨ 𝜒 ) ) ) |
| 15 |
5 14
|
rbsyl |
⊢ ( ¬ ( ¬ ( 𝜓 → 𝜒 ) ∨ ( ¬ 𝜓 ∨ 𝜒 ) ) ∨ ( ¬ ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ¬ ( 𝜓 → 𝜒 ) ) ) |
| 16 |
4 15
|
anmp |
⊢ ( ¬ ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ¬ ( 𝜓 → 𝜒 ) ) |
| 17 |
|
rb-imdf |
⊢ ¬ ( ¬ ( ¬ ( 𝜑 → 𝜒 ) ∨ ( ¬ 𝜑 ∨ 𝜒 ) ) ∨ ¬ ( ¬ ( ¬ 𝜑 ∨ 𝜒 ) ∨ ( 𝜑 → 𝜒 ) ) ) |
| 18 |
17
|
rblem7 |
⊢ ( ¬ ( ¬ 𝜑 ∨ 𝜒 ) ∨ ( 𝜑 → 𝜒 ) ) |
| 19 |
16 18
|
rblem1 |
⊢ ( ¬ ( ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ( ¬ 𝜑 ∨ 𝜒 ) ) ∨ ( ¬ ( 𝜓 → 𝜒 ) ∨ ( 𝜑 → 𝜒 ) ) ) |
| 20 |
|
rb-ax1 |
⊢ ( ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ( ¬ 𝜑 ∨ 𝜒 ) ) ) |
| 21 |
|
rb-ax2 |
⊢ ( ¬ ( ( ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ( ¬ 𝜑 ∨ 𝜒 ) ) ∨ ¬ ( ¬ 𝜑 ∨ 𝜓 ) ) ∨ ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ( ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ( ¬ 𝜑 ∨ 𝜒 ) ) ) ) |
| 22 |
|
rb-ax4 |
⊢ ( ¬ ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ¬ ( ¬ 𝜑 ∨ 𝜓 ) ) ∨ ¬ ( ¬ 𝜑 ∨ 𝜓 ) ) |
| 23 |
|
rb-ax3 |
⊢ ( ¬ ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ¬ ( ¬ 𝜑 ∨ 𝜓 ) ) ) |
| 24 |
22 23
|
rbsyl |
⊢ ( ¬ ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ¬ ( ¬ 𝜑 ∨ 𝜓 ) ) |
| 25 |
|
rb-ax4 |
⊢ ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∨ ( ¬ 𝜑 ∨ 𝜒 ) ) ∨ ( ¬ 𝜑 ∨ 𝜒 ) ) |
| 26 |
|
rb-ax3 |
⊢ ( ¬ ( ¬ 𝜑 ∨ 𝜒 ) ∨ ( ( ¬ 𝜑 ∨ 𝜒 ) ∨ ( ¬ 𝜑 ∨ 𝜒 ) ) ) |
| 27 |
25 26
|
rbsyl |
⊢ ( ¬ ( ¬ 𝜑 ∨ 𝜒 ) ∨ ( ¬ 𝜑 ∨ 𝜒 ) ) |
| 28 |
24 27 11
|
rblem4 |
⊢ ( ¬ ( ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ( ¬ 𝜑 ∨ 𝜒 ) ) ∨ ¬ ( ¬ 𝜓 ∨ 𝜒 ) ) ∨ ( ( ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ( ¬ 𝜑 ∨ 𝜒 ) ) ∨ ¬ ( ¬ 𝜑 ∨ 𝜓 ) ) ) |
| 29 |
|
rb-ax2 |
⊢ ( ¬ ( ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ( ¬ 𝜑 ∨ 𝜒 ) ) ) ∨ ( ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ( ¬ 𝜑 ∨ 𝜒 ) ) ∨ ¬ ( ¬ 𝜓 ∨ 𝜒 ) ) ) |
| 30 |
28 29
|
rbsyl |
⊢ ( ¬ ( ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ( ¬ 𝜑 ∨ 𝜒 ) ) ) ∨ ( ( ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ( ¬ 𝜑 ∨ 𝜒 ) ) ∨ ¬ ( ¬ 𝜑 ∨ 𝜓 ) ) ) |
| 31 |
21 30
|
rbsyl |
⊢ ( ¬ ( ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ( ¬ 𝜑 ∨ 𝜒 ) ) ) ∨ ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ( ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ( ¬ 𝜑 ∨ 𝜒 ) ) ) ) |
| 32 |
20 31
|
anmp |
⊢ ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ( ¬ ( ¬ 𝜓 ∨ 𝜒 ) ∨ ( ¬ 𝜑 ∨ 𝜒 ) ) ) |
| 33 |
19 32
|
rbsyl |
⊢ ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ( ¬ ( 𝜓 → 𝜒 ) ∨ ( 𝜑 → 𝜒 ) ) ) |
| 34 |
|
rb-imdf |
⊢ ¬ ( ¬ ( ¬ ( 𝜑 → 𝜓 ) ∨ ( ¬ 𝜑 ∨ 𝜓 ) ) ∨ ¬ ( ¬ ( ¬ 𝜑 ∨ 𝜓 ) ∨ ( 𝜑 → 𝜓 ) ) ) |
| 35 |
34
|
rblem6 |
⊢ ( ¬ ( 𝜑 → 𝜓 ) ∨ ( ¬ 𝜑 ∨ 𝜓 ) ) |
| 36 |
33 35
|
rbsyl |
⊢ ( ¬ ( 𝜑 → 𝜓 ) ∨ ( ¬ ( 𝜓 → 𝜒 ) ∨ ( 𝜑 → 𝜒 ) ) ) |
| 37 |
2 36
|
rbsyl |
⊢ ( ¬ ( 𝜑 → 𝜓 ) ∨ ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ) |
| 38 |
|
rb-imdf |
⊢ ¬ ( ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ) ∨ ( ¬ ( 𝜑 → 𝜓 ) ∨ ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ) ) ∨ ¬ ( ¬ ( ¬ ( 𝜑 → 𝜓 ) ∨ ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ) ∨ ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ) ) ) |
| 39 |
38
|
rblem7 |
⊢ ( ¬ ( ¬ ( 𝜑 → 𝜓 ) ∨ ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ) ∨ ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ) ) |
| 40 |
37 39
|
anmp |
⊢ ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜒 ) → ( 𝜑 → 𝜒 ) ) ) |