Metamath Proof Explorer


Theorem re1axmp

Description: ax-mp derived from Russell-Bernays'. (Contributed by Anthony Hart, 19-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses re1axmp.min
|- ph
re1axmp.maj
|- ( ph -> ps )
Assertion re1axmp
|- ps

Proof

Step Hyp Ref Expression
1 re1axmp.min
 |-  ph
2 re1axmp.maj
 |-  ( ph -> ps )
3 rb-imdf
 |-  -. ( -. ( -. ( ph -> ps ) \/ ( -. ph \/ ps ) ) \/ -. ( -. ( -. ph \/ ps ) \/ ( ph -> ps ) ) )
4 3 rblem6
 |-  ( -. ( ph -> ps ) \/ ( -. ph \/ ps ) )
5 2 4 anmp
 |-  ( -. ph \/ ps )
6 1 5 anmp
 |-  ps