Metamath Proof Explorer


Theorem rblem2

Description: Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 18-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion rblem2 ¬ χ φ χ φ ψ

Proof

Step Hyp Ref Expression
1 rb-ax2 ¬ ψ φ φ ψ
2 rb-ax3 ¬ φ ψ φ
3 1 2 rbsyl ¬ φ φ ψ
4 rb-ax1 ¬ ¬ φ φ ψ ¬ χ φ χ φ ψ
5 3 4 anmp ¬ χ φ χ φ ψ