Metamath Proof Explorer


Theorem rdg0n

Description: If A is a proper class, then the recursive function generator at (/) is the empty set. (Contributed by Scott Fenton, 31-Oct-2024)

Ref Expression
Assertion rdg0n ¬ A V rec F A =

Proof

Step Hyp Ref Expression
1 0elon On
2 df-rdg rec F A = recs g V if g = A if Lim dom g ran g F g dom g
3 2 tfr2 On rec F A = g V if g = A if Lim dom g ran g F g dom g rec F A
4 1 3 ax-mp rec F A = g V if g = A if Lim dom g ran g F g dom g rec F A
5 res0 rec F A =
6 5 fveq2i g V if g = A if Lim dom g ran g F g dom g rec F A = g V if g = A if Lim dom g ran g F g dom g
7 4 6 eqtri rec F A = g V if g = A if Lim dom g ran g F g dom g
8 iftrue g = if g = A if Lim dom g ran g F g dom g = A
9 eqid g V if g = A if Lim dom g ran g F g dom g = g V if g = A if Lim dom g ran g F g dom g
10 8 9 fvmptn ¬ A V g V if g = A if Lim dom g ran g F g dom g =
11 7 10 eqtrid ¬ A V rec F A =