Metamath Proof Explorer


Theorem rdglimg

Description: The value of the recursive definition generator at a limit ordinal. (Contributed by NM, 16-Nov-2014)

Ref Expression
Assertion rdglimg BdomrecFALimBrecFAB=recFAB

Proof

Step Hyp Ref Expression
1 eqid xVifx=AifLimdomxranxFxdomx=xVifx=AifLimdomxranxFxdomx
2 rdgvalg ydomrecFArecFAy=xVifx=AifLimdomxranxFxdomxrecFAy
3 rdgseg ydomrecFArecFAyV
4 rdgfun FunrecFA
5 funfn FunrecFArecFAFndomrecFA
6 4 5 mpbi recFAFndomrecFA
7 rdgdmlim LimdomrecFA
8 limord LimdomrecFAOrddomrecFA
9 7 8 ax-mp OrddomrecFA
10 1 2 3 6 9 tz7.44-3 BdomrecFALimBrecFAB=recFAB