Metamath Proof Explorer


Theorem tz7.44-3

Description: The value of F at a limit ordinal. Part 3 of Theorem 7.44 of TakeutiZaring p. 49. (Contributed by NM, 23-Apr-1995) (Revised by David Abernethy, 19-Jun-2012)

Ref Expression
Hypotheses tz7.44.1 G = x V if x = A if Lim dom x ran x H x dom x
tz7.44.2 y X F y = G F y
tz7.44.3 y X F y V
tz7.44.4 F Fn X
tz7.44.5 Ord X
Assertion tz7.44-3 B X Lim B F B = F B

Proof

Step Hyp Ref Expression
1 tz7.44.1 G = x V if x = A if Lim dom x ran x H x dom x
2 tz7.44.2 y X F y = G F y
3 tz7.44.3 y X F y V
4 tz7.44.4 F Fn X
5 tz7.44.5 Ord X
6 fveq2 y = B F y = F B
7 reseq2 y = B F y = F B
8 7 fveq2d y = B G F y = G F B
9 6 8 eqeq12d y = B F y = G F y F B = G F B
10 9 2 vtoclga B X F B = G F B
11 10 adantr B X Lim B F B = G F B
12 7 eleq1d y = B F y V F B V
13 12 3 vtoclga B X F B V
14 13 adantr B X Lim B F B V
15 simpr B X Lim B Lim B
16 nlim0 ¬ Lim
17 dmres dom F B = B dom F
18 ordelss Ord X B X B X
19 5 18 mpan B X B X
20 19 adantr B X Lim B B X
21 fndm F Fn X dom F = X
22 4 21 ax-mp dom F = X
23 20 22 sseqtrrdi B X Lim B B dom F
24 df-ss B dom F B dom F = B
25 23 24 sylib B X Lim B B dom F = B
26 17 25 eqtrid B X Lim B dom F B = B
27 dmeq F B = dom F B = dom
28 dm0 dom =
29 27 28 eqtrdi F B = dom F B =
30 26 29 sylan9req B X Lim B F B = B =
31 limeq B = Lim B Lim
32 30 31 syl B X Lim B F B = Lim B Lim
33 16 32 mtbiri B X Lim B F B = ¬ Lim B
34 33 ex B X Lim B F B = ¬ Lim B
35 15 34 mt2d B X Lim B ¬ F B =
36 35 iffalsed B X Lim B if F B = A if Lim dom F B ran F B H F B dom F B = if Lim dom F B ran F B H F B dom F B
37 limeq dom F B = B Lim dom F B Lim B
38 26 37 syl B X Lim B Lim dom F B Lim B
39 15 38 mpbird B X Lim B Lim dom F B
40 39 iftrued B X Lim B if Lim dom F B ran F B H F B dom F B = ran F B
41 36 40 eqtrd B X Lim B if F B = A if Lim dom F B ran F B H F B dom F B = ran F B
42 rnexg F B V ran F B V
43 uniexg ran F B V ran F B V
44 14 42 43 3syl B X Lim B ran F B V
45 41 44 eqeltrd B X Lim B if F B = A if Lim dom F B ran F B H F B dom F B V
46 eqeq1 x = F B x = F B =
47 dmeq x = F B dom x = dom F B
48 limeq dom x = dom F B Lim dom x Lim dom F B
49 47 48 syl x = F B Lim dom x Lim dom F B
50 rneq x = F B ran x = ran F B
51 50 unieqd x = F B ran x = ran F B
52 fveq1 x = F B x dom x = F B dom x
53 47 unieqd x = F B dom x = dom F B
54 53 fveq2d x = F B F B dom x = F B dom F B
55 52 54 eqtrd x = F B x dom x = F B dom F B
56 55 fveq2d x = F B H x dom x = H F B dom F B
57 49 51 56 ifbieq12d x = F B if Lim dom x ran x H x dom x = if Lim dom F B ran F B H F B dom F B
58 46 57 ifbieq2d x = F B if x = A if Lim dom x ran x H x dom x = if F B = A if Lim dom F B ran F B H F B dom F B
59 58 1 fvmptg F B V if F B = A if Lim dom F B ran F B H F B dom F B V G F B = if F B = A if Lim dom F B ran F B H F B dom F B
60 14 45 59 syl2anc B X Lim B G F B = if F B = A if Lim dom F B ran F B H F B dom F B
61 60 41 eqtrd B X Lim B G F B = ran F B
62 11 61 eqtrd B X Lim B F B = ran F B
63 df-ima F B = ran F B
64 63 unieqi F B = ran F B
65 62 64 eqtr4di B X Lim B F B = F B