Metamath Proof Explorer


Theorem rdgsuc

Description: The value of the recursive definition generator at a successor. (Contributed by NM, 23-Apr-1995) (Revised by Mario Carneiro, 14-Nov-2014)

Ref Expression
Assertion rdgsuc BOnrecFAsucB=FrecFAB

Proof

Step Hyp Ref Expression
1 rdgfnon recFAFnOn
2 1 fndmi domrecFA=On
3 2 eleq2i BdomrecFABOn
4 rdgsucg BdomrecFArecFAsucB=FrecFAB
5 3 4 sylbir BOnrecFAsucB=FrecFAB