Metamath Proof Explorer


Theorem rdgsucg

Description: The value of the recursive definition generator at a successor. (Contributed by NM, 16-Nov-2014)

Ref Expression
Assertion rdgsucg BdomrecFArecFAsucB=FrecFAB

Proof

Step Hyp Ref Expression
1 rdgdmlim LimdomrecFA
2 limsuc LimdomrecFABdomrecFAsucBdomrecFA
3 1 2 ax-mp BdomrecFAsucBdomrecFA
4 eqid xVifx=AifLimdomxranxFxdomx=xVifx=AifLimdomxranxFxdomx
5 rdgvalg ydomrecFArecFAy=xVifx=AifLimdomxranxFxdomxrecFAy
6 rdgseg ydomrecFArecFAyV
7 rdgfun FunrecFA
8 funfn FunrecFArecFAFndomrecFA
9 7 8 mpbi recFAFndomrecFA
10 limord LimdomrecFAOrddomrecFA
11 1 10 ax-mp OrddomrecFA
12 4 5 6 9 11 tz7.44-2 sucBdomrecFArecFAsucB=FrecFAB
13 3 12 sylbi BdomrecFArecFAsucB=FrecFAB