Metamath Proof Explorer
		
		
		
		Description:  Real number version of 0m0e0 proven without ax-mulcom .  (Contributed by SN, 23-Jan-2024)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | re0m0e0 |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0red |  | 
						
							| 2 |  | sn-00id |  | 
						
							| 3 | 2 | a1i |  | 
						
							| 4 | 1 1 3 | reladdrsub |  | 
						
							| 5 | 4 | mptru |  | 
						
							| 6 | 5 | eqcomi |  |