Metamath Proof Explorer
Description: Reciprocal is one-to-one. (Contributed by NM, 16-Sep-1999)
|
|
Ref |
Expression |
|
Hypotheses |
divclz.1 |
|
|
|
divclz.2 |
|
|
|
divneq0.3 |
|
|
|
divneq0.4 |
|
|
Assertion |
rec11ii |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
divclz.1 |
|
| 2 |
|
divclz.2 |
|
| 3 |
|
divneq0.3 |
|
| 4 |
|
divneq0.4 |
|
| 5 |
1 2
|
rec11i |
|
| 6 |
3 4 5
|
mp2an |
|