Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
divasszi
Next ⟩
divmulzi
Metamath Proof Explorer
Ascii
Unicode
Theorem
divasszi
Description:
An associative law for division.
(Contributed by
NM
, 12-Aug-1999)
Ref
Expression
Hypotheses
divclz.1
⊢
A
∈
ℂ
divclz.2
⊢
B
∈
ℂ
divmulz.3
⊢
C
∈
ℂ
Assertion
divasszi
⊢
C
≠
0
→
A
⁢
B
C
=
A
⁢
B
C
Proof
Step
Hyp
Ref
Expression
1
divclz.1
⊢
A
∈
ℂ
2
divclz.2
⊢
B
∈
ℂ
3
divmulz.3
⊢
C
∈
ℂ
4
divass
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
→
A
⁢
B
C
=
A
⁢
B
C
5
1
2
4
mp3an12
⊢
C
∈
ℂ
∧
C
≠
0
→
A
⁢
B
C
=
A
⁢
B
C
6
3
5
mpan
⊢
C
≠
0
→
A
⁢
B
C
=
A
⁢
B
C