Metamath Proof Explorer


Theorem recbothd

Description: Take reciprocal on both sides. (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypotheses recbothd.1 φ A
recbothd.2 φ A 0
recbothd.3 φ B
recbothd.4 φ B 0
recbothd.5 φ C
recbothd.6 φ C 0
recbothd.7 φ D
recbothd.8 φ D 0
Assertion recbothd φ A B = C D B A = D C

Proof

Step Hyp Ref Expression
1 recbothd.1 φ A
2 recbothd.2 φ A 0
3 recbothd.3 φ B
4 recbothd.4 φ B 0
5 recbothd.5 φ C
6 recbothd.6 φ C 0
7 recbothd.7 φ D
8 recbothd.8 φ D 0
9 1 3 4 divcld φ A B
10 1 3 2 4 divne0d φ A B 0
11 9 10 jca φ A B A B 0
12 5 7 8 divcld φ C D
13 5 7 6 8 divne0d φ C D 0
14 12 13 jca φ C D C D 0
15 11 14 jca φ A B A B 0 C D C D 0
16 rec11 A B A B 0 C D C D 0 1 A B = 1 C D A B = C D
17 15 16 syl φ 1 A B = 1 C D A B = C D
18 17 bicomd φ A B = C D 1 A B = 1 C D
19 1 3 2 4 recdivd φ 1 A B = B A
20 5 7 6 8 recdivd φ 1 C D = D C
21 19 20 eqeq12d φ 1 A B = 1 C D B A = D C
22 18 21 bitrd φ A B = C D B A = D C