Metamath Proof Explorer


Theorem recbothd

Description: Take reciprocal on both sides. (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypotheses recbothd.1 φA
recbothd.2 φA0
recbothd.3 φB
recbothd.4 φB0
recbothd.5 φC
recbothd.6 φC0
recbothd.7 φD
recbothd.8 φD0
Assertion recbothd φAB=CDBA=DC

Proof

Step Hyp Ref Expression
1 recbothd.1 φA
2 recbothd.2 φA0
3 recbothd.3 φB
4 recbothd.4 φB0
5 recbothd.5 φC
6 recbothd.6 φC0
7 recbothd.7 φD
8 recbothd.8 φD0
9 1 3 4 divcld φAB
10 1 3 2 4 divne0d φAB0
11 9 10 jca φABAB0
12 5 7 8 divcld φCD
13 5 7 6 8 divne0d φCD0
14 12 13 jca φCDCD0
15 11 14 jca φABAB0CDCD0
16 rec11 ABAB0CDCD01AB=1CDAB=CD
17 15 16 syl φ1AB=1CDAB=CD
18 17 bicomd φAB=CD1AB=1CD
19 1 3 2 4 recdivd φ1AB=BA
20 5 7 6 8 recdivd φ1CD=DC
21 19 20 eqeq12d φ1AB=1CDBA=DC
22 18 21 bitrd φAB=CDBA=DC