Metamath Proof Explorer


Theorem recdiv

Description: The reciprocal of a ratio. (Contributed by NM, 3-Aug-2004)

Ref Expression
Assertion recdiv AA0BB01AB=BA

Proof

Step Hyp Ref Expression
1 1div1e1 11=1
2 1 oveq1i 11AB=1AB
3 ax-1cn 1
4 ax-1ne0 10
5 3 4 pm3.2i 110
6 divdivdiv 1110AA0BB011AB=1B1A
7 3 5 6 mpanl12 AA0BB011AB=1B1A
8 2 7 eqtr3id AA0BB01AB=1B1A
9 mullid B1B=B
10 mullid A1A=A
11 9 10 oveqan12rd AB1B1A=BA
12 11 ad2ant2r AA0BB01B1A=BA
13 8 12 eqtrd AA0BB01AB=BA