Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Redundancy
redundpim3
Next ⟩
redundpbi1
Metamath Proof Explorer
Ascii
Unicode
Theorem
redundpim3
Description:
Implication of redundancy of proposition.
(Contributed by
Peter Mazsa
, 26-Oct-2022)
Ref
Expression
Hypothesis
redundpim3.1
⊢
θ
→
χ
Assertion
redundpim3
⊢
redund
φ
ψ
χ
→
redund
φ
ψ
θ
Proof
Step
Hyp
Ref
Expression
1
redundpim3.1
⊢
θ
→
χ
2
anbi1
⊢
φ
∧
χ
↔
ψ
∧
χ
→
φ
∧
χ
∧
θ
↔
ψ
∧
χ
∧
θ
3
1
pm4.71ri
⊢
θ
↔
χ
∧
θ
4
3
bianass
⊢
φ
∧
θ
↔
φ
∧
χ
∧
θ
5
3
bianass
⊢
ψ
∧
θ
↔
ψ
∧
χ
∧
θ
6
2
4
5
3bitr4g
⊢
φ
∧
χ
↔
ψ
∧
χ
→
φ
∧
θ
↔
ψ
∧
θ
7
6
anim2i
⊢
φ
→
ψ
∧
φ
∧
χ
↔
ψ
∧
χ
→
φ
→
ψ
∧
φ
∧
θ
↔
ψ
∧
θ
8
df-redundp
⊢
redund
φ
ψ
χ
↔
φ
→
ψ
∧
φ
∧
χ
↔
ψ
∧
χ
9
df-redundp
⊢
redund
φ
ψ
θ
↔
φ
→
ψ
∧
φ
∧
θ
↔
ψ
∧
θ
10
7
8
9
3imtr4i
⊢
redund
φ
ψ
χ
→
redund
φ
ψ
θ