Metamath Proof Explorer


Theorem reean

Description: Rearrange restricted existential quantifiers. For a version based on fewer axioms see reeanv . (Contributed by NM, 27-Oct-2010) (Proof shortened by Andrew Salmon, 30-May-2011)

Ref Expression
Hypotheses reean.1 yφ
reean.2 xψ
Assertion reean xAyBφψxAφyBψ

Proof

Step Hyp Ref Expression
1 reean.1 yφ
2 reean.2 xψ
3 nfv yxA
4 3 1 nfan yxAφ
5 nfv xyB
6 5 2 nfan xyBψ
7 4 6 eean xyxAφyBψxxAφyyBψ
8 7 reeanlem xAyBφψxAφyBψ