Metamath Proof Explorer


Theorem reglog1

Description: General log of 1 is 0. (Contributed by Stefan O'Rear, 19-Sep-2014) (New usage is discouraged.) Use logb1 instead.

Ref Expression
Assertion reglog1 C+C1log1logC=0

Proof

Step Hyp Ref Expression
1 log1 log1=0
2 1 oveq1i log1logC=0logC
3 relogcl C+logC
4 3 recnd C+logC
5 4 adantr C+C1logC
6 logne0 C+C1logC0
7 5 6 div0d C+C10logC=0
8 2 7 eqtrid C+C1log1logC=0