Metamath Proof Explorer


Theorem reglogexpbas

Description: General log of a power of the base is the exponent. (Contributed by Stefan O'Rear, 19-Sep-2014) (New usage is discouraged.) Use relogbexp instead.

Ref Expression
Assertion reglogexpbas NC+C1logCNlogC=N

Proof

Step Hyp Ref Expression
1 simprl NC+C1C+
2 simpl NC+C1N
3 simpr NC+C1C+C1
4 reglogexp C+NC+C1logCNlogC=NlogClogC
5 1 2 3 4 syl3anc NC+C1logCNlogC=NlogClogC
6 reglogbas C+C1logClogC=1
7 6 adantl NC+C1logClogC=1
8 7 oveq2d NC+C1NlogClogC= N1
9 zcn NN
10 9 adantr NC+C1N
11 10 mulridd NC+C1 N1=N
12 5 8 11 3eqtrd NC+C1logCNlogC=N