| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simprl |
|- ( ( N e. ZZ /\ ( C e. RR+ /\ C =/= 1 ) ) -> C e. RR+ ) |
| 2 |
|
simpl |
|- ( ( N e. ZZ /\ ( C e. RR+ /\ C =/= 1 ) ) -> N e. ZZ ) |
| 3 |
|
simpr |
|- ( ( N e. ZZ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( C e. RR+ /\ C =/= 1 ) ) |
| 4 |
|
reglogexp |
|- ( ( C e. RR+ /\ N e. ZZ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( ( log ` ( C ^ N ) ) / ( log ` C ) ) = ( N x. ( ( log ` C ) / ( log ` C ) ) ) ) |
| 5 |
1 2 3 4
|
syl3anc |
|- ( ( N e. ZZ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( ( log ` ( C ^ N ) ) / ( log ` C ) ) = ( N x. ( ( log ` C ) / ( log ` C ) ) ) ) |
| 6 |
|
reglogbas |
|- ( ( C e. RR+ /\ C =/= 1 ) -> ( ( log ` C ) / ( log ` C ) ) = 1 ) |
| 7 |
6
|
adantl |
|- ( ( N e. ZZ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( ( log ` C ) / ( log ` C ) ) = 1 ) |
| 8 |
7
|
oveq2d |
|- ( ( N e. ZZ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( N x. ( ( log ` C ) / ( log ` C ) ) ) = ( N x. 1 ) ) |
| 9 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
| 10 |
9
|
adantr |
|- ( ( N e. ZZ /\ ( C e. RR+ /\ C =/= 1 ) ) -> N e. CC ) |
| 11 |
10
|
mulridd |
|- ( ( N e. ZZ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( N x. 1 ) = N ) |
| 12 |
5 8 11
|
3eqtrd |
|- ( ( N e. ZZ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( ( log ` ( C ^ N ) ) / ( log ` C ) ) = N ) |