Metamath Proof Explorer


Theorem reldir

Description: A direction is a relation. (Contributed by Jeff Hankins, 25-Nov-2009) (Revised by Mario Carneiro, 22-Nov-2013)

Ref Expression
Assertion reldir R DirRel Rel R

Proof

Step Hyp Ref Expression
1 eqid R = R
2 1 isdir R DirRel R DirRel Rel R I R R R R R R × R R -1 R
3 2 ibi R DirRel Rel R I R R R R R R × R R -1 R
4 3 simplld R DirRel Rel R