Metamath Proof Explorer


Theorem reldmmpo

Description: The domain of an operation defined by maps-to notation is a relation. (Contributed by Stefan O'Rear, 27-Nov-2014)

Ref Expression
Hypothesis rngop.1 F=xA,yBC
Assertion reldmmpo ReldomF

Proof

Step Hyp Ref Expression
1 rngop.1 F=xA,yBC
2 reldmoprab Reldomxyz|xAyBz=C
3 df-mpo xA,yBC=xyz|xAyBz=C
4 1 3 eqtri F=xyz|xAyBz=C
5 4 dmeqi domF=domxyz|xAyBz=C
6 5 releqi ReldomFReldomxyz|xAyBz=C
7 2 6 mpbir ReldomF