Metamath Proof Explorer


Theorem rellindf

Description: The independent-family predicate is a proper relation and can be used with brrelex1i . (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Assertion rellindf RelLIndF

Proof

Step Hyp Ref Expression
1 df-lindf LIndF=fw|f:domfBasew[˙Scalarw/s]˙xdomfkBases0s¬kwfxLSpanwfdomfx
2 1 relopabiv RelLIndF