Metamath Proof Explorer


Theorem relmptopab

Description: Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 7-Aug-2014) (Proof shortened by Mario Carneiro, 24-Dec-2016)

Ref Expression
Hypothesis relmptopab.1 F=xAyz|φ
Assertion relmptopab RelFB

Proof

Step Hyp Ref Expression
1 relmptopab.1 F=xAyz|φ
2 1 fvmptss xAyz|φV×VFBV×V
3 relopab Relyz|φ
4 df-rel Relyz|φyz|φV×V
5 3 4 mpbi yz|φV×V
6 5 a1i xAyz|φV×V
7 2 6 mprg FBV×V
8 df-rel RelFBFBV×V
9 7 8 mpbir RelFB