Description: A singleton is a relation iff it has a nonempty domain. (Contributed by NM, 25-Sep-2013) Make hypothesis an antecedent. (Revised by BJ, 12-Feb-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | relsn2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsng | |
|
2 | dmsnn0 | |
|
3 | 1 2 | bitrdi | |