Metamath Proof Explorer


Theorem replim

Description: Reconstruct a complex number from its real and imaginary parts. (Contributed by NM, 10-May-1999) (Revised by Mario Carneiro, 7-Nov-2013)

Ref Expression
Assertion replim AA=A+iA

Proof

Step Hyp Ref Expression
1 cnre AxyA=x+iy
2 crre xyx+iy=x
3 crim xyx+iy=y
4 3 oveq2d xyix+iy=iy
5 2 4 oveq12d xyx+iy+ix+iy=x+iy
6 5 eqcomd xyx+iy=x+iy+ix+iy
7 id A=x+iyA=x+iy
8 fveq2 A=x+iyA=x+iy
9 fveq2 A=x+iyA=x+iy
10 9 oveq2d A=x+iyiA=ix+iy
11 8 10 oveq12d A=x+iyA+iA=x+iy+ix+iy
12 7 11 eqeq12d A=x+iyA=A+iAx+iy=x+iy+ix+iy
13 6 12 syl5ibrcom xyA=x+iyA=A+iA
14 13 rexlimivv xyA=x+iyA=A+iA
15 1 14 syl AA=A+iA