Database
REAL AND COMPLEX NUMBERS
Words over a set
Repeated symbol words
repswfsts
Next ⟩
repswlsw
Metamath Proof Explorer
Ascii
Unicode
Theorem
repswfsts
Description:
The first symbol of a nonempty "repeated symbol word".
(Contributed by
AV
, 4-Nov-2018)
Ref
Expression
Assertion
repswfsts
⊢
S
∈
V
∧
N
∈
ℕ
→
S
repeatS
N
⁡
0
=
S
Proof
Step
Hyp
Ref
Expression
1
simpl
⊢
S
∈
V
∧
N
∈
ℕ
→
S
∈
V
2
nnnn0
⊢
N
∈
ℕ
→
N
∈
ℕ
0
3
2
adantl
⊢
S
∈
V
∧
N
∈
ℕ
→
N
∈
ℕ
0
4
lbfzo0
⊢
0
∈
0
..^
N
↔
N
∈
ℕ
5
4
biimpri
⊢
N
∈
ℕ
→
0
∈
0
..^
N
6
5
adantl
⊢
S
∈
V
∧
N
∈
ℕ
→
0
∈
0
..^
N
7
repswsymb
⊢
S
∈
V
∧
N
∈
ℕ
0
∧
0
∈
0
..^
N
→
S
repeatS
N
⁡
0
=
S
8
1
3
6
7
syl3anc
⊢
S
∈
V
∧
N
∈
ℕ
→
S
repeatS
N
⁡
0
=
S