Metamath Proof Explorer


Theorem rerisefaccl

Description: Closure law for rising factorial. (Contributed by Scott Fenton, 5-Jan-2018)

Ref Expression
Assertion rerisefaccl AN0AN

Proof

Step Hyp Ref Expression
1 ax-resscn
2 1re 1
3 remulcl xyxy
4 nn0re k0k
5 readdcl AkA+k
6 4 5 sylan2 Ak0A+k
7 1 2 3 6 risefaccllem AN0AN