Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Falling and Rising Factorial
refallfaccl
Next ⟩
nnrisefaccl
Metamath Proof Explorer
Ascii
Unicode
Theorem
refallfaccl
Description:
Closure law for falling factorial.
(Contributed by
Scott Fenton
, 5-Jan-2018)
Ref
Expression
Assertion
refallfaccl
⊢
A
∈
ℝ
∧
N
∈
ℕ
0
→
A
N
_
∈
ℝ
Proof
Step
Hyp
Ref
Expression
1
ax-resscn
⊢
ℝ
⊆
ℂ
2
1re
⊢
1
∈
ℝ
3
remulcl
⊢
x
∈
ℝ
∧
y
∈
ℝ
→
x
⁢
y
∈
ℝ
4
nn0re
⊢
k
∈
ℕ
0
→
k
∈
ℝ
5
resubcl
⊢
A
∈
ℝ
∧
k
∈
ℝ
→
A
−
k
∈
ℝ
6
4
5
sylan2
⊢
A
∈
ℝ
∧
k
∈
ℕ
0
→
A
−
k
∈
ℝ
7
1
2
3
6
fallfaccllem
⊢
A
∈
ℝ
∧
N
∈
ℕ
0
→
A
N
_
∈
ℝ