Metamath Proof Explorer


Theorem refallfaccl

Description: Closure law for falling factorial. (Contributed by Scott Fenton, 5-Jan-2018)

Ref Expression
Assertion refallfaccl AN0AN_

Proof

Step Hyp Ref Expression
1 ax-resscn
2 1re 1
3 remulcl xyxy
4 nn0re k0k
5 resubcl AkAk
6 4 5 sylan2 Ak0Ak
7 1 2 3 6 fallfaccllem AN0AN_