Metamath Proof Explorer


Theorem rescnvcnv

Description: The restriction of the double converse of a class. (Contributed by NM, 8-Apr-2007) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion rescnvcnv A-1-1B=AB

Proof

Step Hyp Ref Expression
1 cnvcnv2 A-1-1=AV
2 1 reseq1i A-1-1B=AVB
3 resres AVB=AVB
4 ssv BV
5 sseqin2 BVVB=B
6 4 5 mpbi VB=B
7 6 reseq2i AVB=AB
8 2 3 7 3eqtri A-1-1B=AB