Metamath Proof Explorer


Theorem resdmres

Description: Restriction to the domain of a restriction. (Contributed by NM, 8-Apr-2007)

Ref Expression
Assertion resdmres AdomAB=AB

Proof

Step Hyp Ref Expression
1 in12 AB×VdomA×V=B×VAdomA×V
2 df-res AdomA=AdomA×V
3 resdm2 AdomA=A-1-1
4 2 3 eqtr3i AdomA×V=A-1-1
5 4 ineq2i B×VAdomA×V=B×VA-1-1
6 incom B×VA-1-1=A-1-1B×V
7 1 5 6 3eqtri AB×VdomA×V=A-1-1B×V
8 df-res AdomAB=AdomAB×V
9 dmres domAB=BdomA
10 9 xpeq1i domAB×V=BdomA×V
11 xpindir BdomA×V=B×VdomA×V
12 10 11 eqtri domAB×V=B×VdomA×V
13 12 ineq2i AdomAB×V=AB×VdomA×V
14 8 13 eqtri AdomAB=AB×VdomA×V
15 df-res A-1-1B=A-1-1B×V
16 7 14 15 3eqtr4i AdomAB=A-1-1B
17 rescnvcnv A-1-1B=AB
18 16 17 eqtri AdomAB=AB