Metamath Proof Explorer


Theorem resfval

Description: Value of the functor restriction operator. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses resfval.c φFV
resfval.d φHW
Assertion resfval φFfH=1stFdomdomHxdomH2ndFxHx

Proof

Step Hyp Ref Expression
1 resfval.c φFV
2 resfval.d φHW
3 df-resf f=fV,hV1stfdomdomhxdomh2ndfxhx
4 3 a1i φf=fV,hV1stfdomdomhxdomh2ndfxhx
5 simprl φf=Fh=Hf=F
6 5 fveq2d φf=Fh=H1stf=1stF
7 simprr φf=Fh=Hh=H
8 7 dmeqd φf=Fh=Hdomh=domH
9 8 dmeqd φf=Fh=Hdomdomh=domdomH
10 6 9 reseq12d φf=Fh=H1stfdomdomh=1stFdomdomH
11 5 fveq2d φf=Fh=H2ndf=2ndF
12 11 fveq1d φf=Fh=H2ndfx=2ndFx
13 7 fveq1d φf=Fh=Hhx=Hx
14 12 13 reseq12d φf=Fh=H2ndfxhx=2ndFxHx
15 8 14 mpteq12dv φf=Fh=Hxdomh2ndfxhx=xdomH2ndFxHx
16 10 15 opeq12d φf=Fh=H1stfdomdomhxdomh2ndfxhx=1stFdomdomHxdomH2ndFxHx
17 1 elexd φFV
18 2 elexd φHV
19 opex 1stFdomdomHxdomH2ndFxHxV
20 19 a1i φ1stFdomdomHxdomH2ndFxHxV
21 4 16 17 18 20 ovmpod φFfH=1stFdomdomHxdomH2ndFxHx