Metamath Proof Explorer


Theorem resgrpisgrp

Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the other group restricted to the base set of the group is a group. (Contributed by AV, 14-Mar-2019)

Ref Expression
Hypotheses grpissubg.b B=BaseG
grpissubg.s S=BaseH
Assertion resgrpisgrp GGrpHGrpSB+H=+GS×SG𝑠SGrp

Proof

Step Hyp Ref Expression
1 grpissubg.b B=BaseG
2 grpissubg.s S=BaseH
3 1 2 grpissubg GGrpHGrpSB+H=+GS×SSSubGrpG
4 3 imp GGrpHGrpSB+H=+GS×SSSubGrpG
5 ibar GGrpSBG𝑠SGrpGGrpSBG𝑠SGrp
6 5 ad2ant2r GGrpHGrpSB+H=+GS×SG𝑠SGrpGGrpSBG𝑠SGrp
7 df-3an GGrpSBG𝑠SGrpGGrpSBG𝑠SGrp
8 6 7 bitr4di GGrpHGrpSB+H=+GS×SG𝑠SGrpGGrpSBG𝑠SGrp
9 1 issubg SSubGrpGGGrpSBG𝑠SGrp
10 8 9 bitr4di GGrpHGrpSB+H=+GS×SG𝑠SGrpSSubGrpG
11 4 10 mpbird GGrpHGrpSB+H=+GS×SG𝑠SGrp
12 11 ex GGrpHGrpSB+H=+GS×SG𝑠SGrp