Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
ZF Set Theory - add the Axiom of Union
Function transposition
resinsn
Next ⟩
resinsnALT
Metamath Proof Explorer
Ascii
Unicode
Theorem
resinsn
Description:
Restriction to the intersection with a singleton.
(Contributed by
Zhi Wang
, 6-Oct-2025)
Ref
Expression
Assertion
resinsn
⊢
F
↾
A
∩
B
=
∅
↔
¬
B
∈
dom
⁡
F
∩
A
Proof
Step
Hyp
Ref
Expression
1
relres
⊢
Rel
⁡
F
↾
A
∩
B
2
reldm0
⊢
Rel
⁡
F
↾
A
∩
B
→
F
↾
A
∩
B
=
∅
↔
dom
⁡
F
↾
A
∩
B
=
∅
3
1
2
ax-mp
⊢
F
↾
A
∩
B
=
∅
↔
dom
⁡
F
↾
A
∩
B
=
∅
4
incom
⊢
A
∩
B
∩
dom
⁡
F
=
dom
⁡
F
∩
A
∩
B
5
dmres
⊢
dom
⁡
F
↾
A
∩
B
=
A
∩
B
∩
dom
⁡
F
6
inass
⊢
dom
⁡
F
∩
A
∩
B
=
dom
⁡
F
∩
A
∩
B
7
4
5
6
3eqtr4i
⊢
dom
⁡
F
↾
A
∩
B
=
dom
⁡
F
∩
A
∩
B
8
7
eqeq1i
⊢
dom
⁡
F
↾
A
∩
B
=
∅
↔
dom
⁡
F
∩
A
∩
B
=
∅
9
disjsn
⊢
dom
⁡
F
∩
A
∩
B
=
∅
↔
¬
B
∈
dom
⁡
F
∩
A
10
3
8
9
3bitri
⊢
F
↾
A
∩
B
=
∅
↔
¬
B
∈
dom
⁡
F
∩
A