| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relres |
|- Rel ( F |` ( A i^i { B } ) ) |
| 2 |
|
reldm0 |
|- ( Rel ( F |` ( A i^i { B } ) ) -> ( ( F |` ( A i^i { B } ) ) = (/) <-> dom ( F |` ( A i^i { B } ) ) = (/) ) ) |
| 3 |
1 2
|
ax-mp |
|- ( ( F |` ( A i^i { B } ) ) = (/) <-> dom ( F |` ( A i^i { B } ) ) = (/) ) |
| 4 |
|
incom |
|- ( ( A i^i { B } ) i^i dom F ) = ( dom F i^i ( A i^i { B } ) ) |
| 5 |
|
dmres |
|- dom ( F |` ( A i^i { B } ) ) = ( ( A i^i { B } ) i^i dom F ) |
| 6 |
|
inass |
|- ( ( dom F i^i A ) i^i { B } ) = ( dom F i^i ( A i^i { B } ) ) |
| 7 |
4 5 6
|
3eqtr4i |
|- dom ( F |` ( A i^i { B } ) ) = ( ( dom F i^i A ) i^i { B } ) |
| 8 |
7
|
eqeq1i |
|- ( dom ( F |` ( A i^i { B } ) ) = (/) <-> ( ( dom F i^i A ) i^i { B } ) = (/) ) |
| 9 |
|
disjsn |
|- ( ( ( dom F i^i A ) i^i { B } ) = (/) <-> -. B e. ( dom F i^i A ) ) |
| 10 |
3 8 9
|
3bitri |
|- ( ( F |` ( A i^i { B } ) ) = (/) <-> -. B e. ( dom F i^i A ) ) |