Metamath Proof Explorer


Theorem resinsn

Description: Restriction to the intersection with a singleton. (Contributed by Zhi Wang, 6-Oct-2025)

Ref Expression
Assertion resinsn
|- ( ( F |` ( A i^i { B } ) ) = (/) <-> -. B e. ( dom F i^i A ) )

Proof

Step Hyp Ref Expression
1 relres
 |-  Rel ( F |` ( A i^i { B } ) )
2 reldm0
 |-  ( Rel ( F |` ( A i^i { B } ) ) -> ( ( F |` ( A i^i { B } ) ) = (/) <-> dom ( F |` ( A i^i { B } ) ) = (/) ) )
3 1 2 ax-mp
 |-  ( ( F |` ( A i^i { B } ) ) = (/) <-> dom ( F |` ( A i^i { B } ) ) = (/) )
4 incom
 |-  ( ( A i^i { B } ) i^i dom F ) = ( dom F i^i ( A i^i { B } ) )
5 dmres
 |-  dom ( F |` ( A i^i { B } ) ) = ( ( A i^i { B } ) i^i dom F )
6 inass
 |-  ( ( dom F i^i A ) i^i { B } ) = ( dom F i^i ( A i^i { B } ) )
7 4 5 6 3eqtr4i
 |-  dom ( F |` ( A i^i { B } ) ) = ( ( dom F i^i A ) i^i { B } )
8 7 eqeq1i
 |-  ( dom ( F |` ( A i^i { B } ) ) = (/) <-> ( ( dom F i^i A ) i^i { B } ) = (/) )
9 disjsn
 |-  ( ( ( dom F i^i A ) i^i { B } ) = (/) <-> -. B e. ( dom F i^i A ) )
10 3 8 9 3bitri
 |-  ( ( F |` ( A i^i { B } ) ) = (/) <-> -. B e. ( dom F i^i A ) )