| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relres |
⊢ Rel ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) |
| 2 |
|
reldm0 |
⊢ ( Rel ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) → ( ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ ↔ dom ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ ) ) |
| 3 |
1 2
|
ax-mp |
⊢ ( ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ ↔ dom ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ ) |
| 4 |
|
incom |
⊢ ( ( 𝐴 ∩ { 𝐵 } ) ∩ dom 𝐹 ) = ( dom 𝐹 ∩ ( 𝐴 ∩ { 𝐵 } ) ) |
| 5 |
|
dmres |
⊢ dom ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) = ( ( 𝐴 ∩ { 𝐵 } ) ∩ dom 𝐹 ) |
| 6 |
|
inass |
⊢ ( ( dom 𝐹 ∩ 𝐴 ) ∩ { 𝐵 } ) = ( dom 𝐹 ∩ ( 𝐴 ∩ { 𝐵 } ) ) |
| 7 |
4 5 6
|
3eqtr4i |
⊢ dom ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) = ( ( dom 𝐹 ∩ 𝐴 ) ∩ { 𝐵 } ) |
| 8 |
7
|
eqeq1i |
⊢ ( dom ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ ↔ ( ( dom 𝐹 ∩ 𝐴 ) ∩ { 𝐵 } ) = ∅ ) |
| 9 |
|
disjsn |
⊢ ( ( ( dom 𝐹 ∩ 𝐴 ) ∩ { 𝐵 } ) = ∅ ↔ ¬ 𝐵 ∈ ( dom 𝐹 ∩ 𝐴 ) ) |
| 10 |
3 8 9
|
3bitri |
⊢ ( ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ ↔ ¬ 𝐵 ∈ ( dom 𝐹 ∩ 𝐴 ) ) |