Metamath Proof Explorer


Theorem resinsn

Description: Restriction to the intersection with a singleton. (Contributed by Zhi Wang, 6-Oct-2025)

Ref Expression
Assertion resinsn ( ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ ↔ ¬ 𝐵 ∈ ( dom 𝐹𝐴 ) )

Proof

Step Hyp Ref Expression
1 relres Rel ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) )
2 reldm0 ( Rel ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) → ( ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ ↔ dom ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ ) )
3 1 2 ax-mp ( ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ ↔ dom ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ )
4 incom ( ( 𝐴 ∩ { 𝐵 } ) ∩ dom 𝐹 ) = ( dom 𝐹 ∩ ( 𝐴 ∩ { 𝐵 } ) )
5 dmres dom ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) = ( ( 𝐴 ∩ { 𝐵 } ) ∩ dom 𝐹 )
6 inass ( ( dom 𝐹𝐴 ) ∩ { 𝐵 } ) = ( dom 𝐹 ∩ ( 𝐴 ∩ { 𝐵 } ) )
7 4 5 6 3eqtr4i dom ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) = ( ( dom 𝐹𝐴 ) ∩ { 𝐵 } )
8 7 eqeq1i ( dom ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ ↔ ( ( dom 𝐹𝐴 ) ∩ { 𝐵 } ) = ∅ )
9 disjsn ( ( ( dom 𝐹𝐴 ) ∩ { 𝐵 } ) = ∅ ↔ ¬ 𝐵 ∈ ( dom 𝐹𝐴 ) )
10 3 8 9 3bitri ( ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ ↔ ¬ 𝐵 ∈ ( dom 𝐹𝐴 ) )