Metamath Proof Explorer


Theorem resinsnALT

Description: Restriction to the intersection with a singleton. (Contributed by Zhi Wang, 6-Oct-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion resinsnALT ( ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ ↔ ¬ 𝐵 ∈ ( dom 𝐹𝐴 ) )

Proof

Step Hyp Ref Expression
1 relres Rel ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) )
2 reldm0 ( Rel ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) → ( ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ ↔ dom ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ ) )
3 1 2 ax-mp ( ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ ↔ dom ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ )
4 dmres dom ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) = ( ( 𝐴 ∩ { 𝐵 } ) ∩ dom 𝐹 )
5 incom ( ( 𝐴 ∩ { 𝐵 } ) ∩ dom 𝐹 ) = ( dom 𝐹 ∩ ( 𝐴 ∩ { 𝐵 } ) )
6 4 5 eqtri dom ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) = ( dom 𝐹 ∩ ( 𝐴 ∩ { 𝐵 } ) )
7 6 eqeq1i ( dom ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ ↔ ( dom 𝐹 ∩ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ )
8 elin ( 𝐵 ∈ ( dom 𝐹𝐴 ) ↔ ( 𝐵 ∈ dom 𝐹𝐵𝐴 ) )
9 ancom ( ( 𝐵 ∈ dom 𝐹𝐵𝐴 ) ↔ ( 𝐵𝐴𝐵 ∈ dom 𝐹 ) )
10 snssi ( 𝐵𝐴 → { 𝐵 } ⊆ 𝐴 )
11 incom ( 𝐴 ∩ { 𝐵 } ) = ( { 𝐵 } ∩ 𝐴 )
12 dfss2 ( { 𝐵 } ⊆ 𝐴 ↔ ( { 𝐵 } ∩ 𝐴 ) = { 𝐵 } )
13 12 biimpi ( { 𝐵 } ⊆ 𝐴 → ( { 𝐵 } ∩ 𝐴 ) = { 𝐵 } )
14 11 13 eqtrid ( { 𝐵 } ⊆ 𝐴 → ( 𝐴 ∩ { 𝐵 } ) = { 𝐵 } )
15 10 14 syl ( 𝐵𝐴 → ( 𝐴 ∩ { 𝐵 } ) = { 𝐵 } )
16 15 ineq2d ( 𝐵𝐴 → ( dom 𝐹 ∩ ( 𝐴 ∩ { 𝐵 } ) ) = ( dom 𝐹 ∩ { 𝐵 } ) )
17 16 eqeq1d ( 𝐵𝐴 → ( ( dom 𝐹 ∩ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ ↔ ( dom 𝐹 ∩ { 𝐵 } ) = ∅ ) )
18 disjsn ( ( dom 𝐹 ∩ { 𝐵 } ) = ∅ ↔ ¬ 𝐵 ∈ dom 𝐹 )
19 17 18 bitrdi ( 𝐵𝐴 → ( ( dom 𝐹 ∩ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ ↔ ¬ 𝐵 ∈ dom 𝐹 ) )
20 disjsn ( ( 𝐴 ∩ { 𝐵 } ) = ∅ ↔ ¬ 𝐵𝐴 )
21 20 biimpri ( ¬ 𝐵𝐴 → ( 𝐴 ∩ { 𝐵 } ) = ∅ )
22 21 ineq2d ( ¬ 𝐵𝐴 → ( dom 𝐹 ∩ ( 𝐴 ∩ { 𝐵 } ) ) = ( dom 𝐹 ∩ ∅ ) )
23 in0 ( dom 𝐹 ∩ ∅ ) = ∅
24 22 23 eqtrdi ( ¬ 𝐵𝐴 → ( dom 𝐹 ∩ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ )
25 19 24 resinsnlem ( ( 𝐵𝐴𝐵 ∈ dom 𝐹 ) ↔ ¬ ( dom 𝐹 ∩ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ )
26 8 9 25 3bitri ( 𝐵 ∈ ( dom 𝐹𝐴 ) ↔ ¬ ( dom 𝐹 ∩ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ )
27 26 con2bii ( ( dom 𝐹 ∩ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ ↔ ¬ 𝐵 ∈ ( dom 𝐹𝐴 ) )
28 3 7 27 3bitri ( ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ ↔ ¬ 𝐵 ∈ ( dom 𝐹𝐴 ) )