| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relres |
⊢ Rel ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) |
| 2 |
|
reldm0 |
⊢ ( Rel ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) → ( ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ ↔ dom ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ ) ) |
| 3 |
1 2
|
ax-mp |
⊢ ( ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ ↔ dom ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ ) |
| 4 |
|
dmres |
⊢ dom ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) = ( ( 𝐴 ∩ { 𝐵 } ) ∩ dom 𝐹 ) |
| 5 |
|
incom |
⊢ ( ( 𝐴 ∩ { 𝐵 } ) ∩ dom 𝐹 ) = ( dom 𝐹 ∩ ( 𝐴 ∩ { 𝐵 } ) ) |
| 6 |
4 5
|
eqtri |
⊢ dom ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) = ( dom 𝐹 ∩ ( 𝐴 ∩ { 𝐵 } ) ) |
| 7 |
6
|
eqeq1i |
⊢ ( dom ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ ↔ ( dom 𝐹 ∩ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ ) |
| 8 |
|
elin |
⊢ ( 𝐵 ∈ ( dom 𝐹 ∩ 𝐴 ) ↔ ( 𝐵 ∈ dom 𝐹 ∧ 𝐵 ∈ 𝐴 ) ) |
| 9 |
|
ancom |
⊢ ( ( 𝐵 ∈ dom 𝐹 ∧ 𝐵 ∈ 𝐴 ) ↔ ( 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ dom 𝐹 ) ) |
| 10 |
|
snssi |
⊢ ( 𝐵 ∈ 𝐴 → { 𝐵 } ⊆ 𝐴 ) |
| 11 |
|
incom |
⊢ ( 𝐴 ∩ { 𝐵 } ) = ( { 𝐵 } ∩ 𝐴 ) |
| 12 |
|
dfss2 |
⊢ ( { 𝐵 } ⊆ 𝐴 ↔ ( { 𝐵 } ∩ 𝐴 ) = { 𝐵 } ) |
| 13 |
12
|
biimpi |
⊢ ( { 𝐵 } ⊆ 𝐴 → ( { 𝐵 } ∩ 𝐴 ) = { 𝐵 } ) |
| 14 |
11 13
|
eqtrid |
⊢ ( { 𝐵 } ⊆ 𝐴 → ( 𝐴 ∩ { 𝐵 } ) = { 𝐵 } ) |
| 15 |
10 14
|
syl |
⊢ ( 𝐵 ∈ 𝐴 → ( 𝐴 ∩ { 𝐵 } ) = { 𝐵 } ) |
| 16 |
15
|
ineq2d |
⊢ ( 𝐵 ∈ 𝐴 → ( dom 𝐹 ∩ ( 𝐴 ∩ { 𝐵 } ) ) = ( dom 𝐹 ∩ { 𝐵 } ) ) |
| 17 |
16
|
eqeq1d |
⊢ ( 𝐵 ∈ 𝐴 → ( ( dom 𝐹 ∩ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ ↔ ( dom 𝐹 ∩ { 𝐵 } ) = ∅ ) ) |
| 18 |
|
disjsn |
⊢ ( ( dom 𝐹 ∩ { 𝐵 } ) = ∅ ↔ ¬ 𝐵 ∈ dom 𝐹 ) |
| 19 |
17 18
|
bitrdi |
⊢ ( 𝐵 ∈ 𝐴 → ( ( dom 𝐹 ∩ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ ↔ ¬ 𝐵 ∈ dom 𝐹 ) ) |
| 20 |
|
disjsn |
⊢ ( ( 𝐴 ∩ { 𝐵 } ) = ∅ ↔ ¬ 𝐵 ∈ 𝐴 ) |
| 21 |
20
|
biimpri |
⊢ ( ¬ 𝐵 ∈ 𝐴 → ( 𝐴 ∩ { 𝐵 } ) = ∅ ) |
| 22 |
21
|
ineq2d |
⊢ ( ¬ 𝐵 ∈ 𝐴 → ( dom 𝐹 ∩ ( 𝐴 ∩ { 𝐵 } ) ) = ( dom 𝐹 ∩ ∅ ) ) |
| 23 |
|
in0 |
⊢ ( dom 𝐹 ∩ ∅ ) = ∅ |
| 24 |
22 23
|
eqtrdi |
⊢ ( ¬ 𝐵 ∈ 𝐴 → ( dom 𝐹 ∩ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ ) |
| 25 |
19 24
|
resinsnlem |
⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ dom 𝐹 ) ↔ ¬ ( dom 𝐹 ∩ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ ) |
| 26 |
8 9 25
|
3bitri |
⊢ ( 𝐵 ∈ ( dom 𝐹 ∩ 𝐴 ) ↔ ¬ ( dom 𝐹 ∩ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ ) |
| 27 |
26
|
con2bii |
⊢ ( ( dom 𝐹 ∩ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ ↔ ¬ 𝐵 ∈ ( dom 𝐹 ∩ 𝐴 ) ) |
| 28 |
3 7 27
|
3bitri |
⊢ ( ( 𝐹 ↾ ( 𝐴 ∩ { 𝐵 } ) ) = ∅ ↔ ¬ 𝐵 ∈ ( dom 𝐹 ∩ 𝐴 ) ) |